
Database Replication

Synthesis Lectures on Data
Management

Editor
M. Tamer Özsu, University of Waterloo

Synthesis Lectures on Data Management is edited by Tamer Özsu of the University of Waterloo. The
series will publish 50- to 125 page publications on topics pertaining to data management. The scope
will largely follow the purview of premier information and computer science conferences, such as ACM
SIGMOD, VLDB, ICDE, PODS, ICDT, and ACM KDD. Potential topics include, but not are
limited to: query languages, database system architectures, transaction management, data warehousing,
XML and databases, data stream systems, wide scale data distribution, multimedia data management,
data mining, and related subjects.

Database Replication
Bettina Kemme, Ricardo Jiménez Peris, and Marta Patiño-Martínez
2010

User-Centered Data Management
Tiziana Catarci, Alan Dix, Stephen Kimani, and Giuseppe Santucci
2010

Data Stream Management
Lukasz Golab and M. Tamer Özsu
2010

Access Control in Data Management Systems
Elena Ferrari
2010

An Introduction to Duplicate Detection
Felix Naumann and Melanie Herschel
2010

Privacy-Preserving Data Publishing: An Overview
Raymond Chi-Wing Wong and Ada Wai-Chee Fu
2010

Keyword Search in Databases
Jeffrey Xu Yu, Lu Qin, and Lijun Chang
2009

iv

Copyright © 2010 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in
printed reviews, without the prior permission of the publisher.

Database Replication

Bettina Kemme, Ricardo Jiménez Peris, and Marta Patiño-Martínez

www.morganclaypool.com

ISBN: 9781608453818 paperback
ISBN: 9781608453825 ebook

DOI 10.2200/S00296ED1V01Y201008DTM007

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON DATA MANAGEMENT

Lecture #7
Series Editor: M. Tamer Özsu, University of Waterloo

Series ISSN
Synthesis Lectures on Data Management
Print 2153-5418 Electronic 2153-5426

www.morganclaypool.com

Database Replication

Bettina Kemme
McGill University

Ricardo Jiménez Peris
Technical University of Madrid

Marta Patiño-Martínez
Technical University of Madrid

SYNTHESIS LECTURES ON DATA MANAGEMENT #7

CM& cLaypoolMorgan publishers&

ABSTRACT
Database replication is widely used for fault-tolerance, scalability and performance. The failure of
one database replica does not stop the system from working as available replicas can take over the
tasks of the failed replica. Scalability can be achieved by distributing the load across all replicas,
and adding new replicas should the load increase. Finally, database replication can provide fast local
access, even if clients are geographically distributed clients, if data copies are located close to clients.

Despite its advantages, replication is not a straightforward technique to apply, and there are
many hurdles to overcome. At the forefront is replica control: assuring that data copies remain
consistent when updates occur. There exist many alternatives in regard to where updates can occur
and when changes are propagated to data copies, how changes are applied, where the replication tool
is located, etc. A particular challenge is to combine replica control with transaction management as it
requires several operations to be treated as a single logical unit, and it provides atomicity, consistency,
isolation and durability across the replicated system. The book provides a categorization of replica
control mechanisms, presents several replica and concurrency control mechanisms in detail, and
discusses many of the issues that arise when such solutions need to be implemented within or on
top of relational database systems.

Furthermore, the book presents the tasks that are needed to build a fault-tolerant replication
solution, provides an overview of load-balancing strategies that allow load to be equally distributed
across all replicas, and introduces the concept of self-provisioning that allows the replicated system
to dynamically decide on the number of replicas that are needed to handle the current load. As
performance evaluation is a crucial aspect when developing a replication tool, the book presents an
analytical model of the scalability potential of various replication solution.

For readers that are only interested in getting a good overview of the challenges of database
replication and the general mechanisms of how to implement replication solutions, we recommend
to read Chapters 1 to 4. For readers that want to get a more complete picture and a discussion of
advanced issues, we further recommend the Chapters 5, 8, 9 and 10. Finally, Chapters 6 and 7 are of
interest for those who want get familiar with thorough algorithm design and correctness reasoning.

KEYWORDS
database replication, transactions, replica control, 1-copy-equivalence, consistency, scal-
ability, fault-tolerance, performance, elasticity

To Maya and Sophia
Bettina

To my parents Ricardo and Maria Adelina,
my siblings David and Ana, and my son Alejandro

Ricardo

To my parents Manuel and Cele,
my brother Manolo, and my son Alejandro

Marta

ix

Contents

1 Overview .1

1.1 Motivation . 1

1.2 Challenges . 4

1.2.1 Replica Control . 4

1.2.2 Other Issues . 6

2 1-Copy-Equivalence and Consistency .9

2.1 Replication Model . 9

2.2 1-Copy-Isolation . 10

2.3 1-Copy-Atomicity . 13

2.4 1-Copy-Durability . 14

2.5 Relationship Between Isolation, Atomicity and Durability 14

2.6 1-Copy-Consistency . 15

2.7 Session Consistency. 15

2.8 Eventual Consistency . 16

3 Basic Protocols . 19

3.1 Eager Protocols . 19

3.1.1 Protocol Description . 19

3.1.2 Example Execution . 21

3.1.3 Eager Properties . 22

3.1.4 Primary Copy vs. Update Anywhere . 23

3.2 Lazy Protocols . 25

3.2.1 Protocol Description . 25

3.2.2 Example Execution . 25

3.2.3 Lazy vs. Eager Properties . 25

3.2.4 Primary Copy vs. Update Anywhere . 27

3.2.5 Summary . 29

x

4 Replication Architecture . 31

4.1 Where to Locate the Replication Logic . 32
4.1.1 Kernel Based Architecture . 32
4.1.2 Middleware Based Architecture . 32
4.1.3 Kernel vs. Middleware Based Replication . 34
4.1.4 Black vs. Grey Box Middleware . 35

4.2 Processing of Write Operations . 35

4.3 Partial Replication . 37

4.4 Other Issues . 38

4.5 Group Communication as Building Block . 40
4.5.1 Group Communication and Reliable Multicast . 40
4.5.2 Simplifying Replication with Group Communication 43

4.6 Related Work . 45

5 The Scalability of Replication . 47

5.1 Model . 48

5.2 The Analysis . 49

5.3 Related Work . 51

6 Eager Replication and 1-Copy-Serializability . 53

6.1 Centralized Middleware . 54
6.1.1 Protocol . 54
6.1.2 Example Execution . 54
6.1.3 Algorithm Properties . 55
6.1.4 Discussion . 57

6.2 Decentralized Middleware . 57
6.2.1 Protocol . 58
6.2.2 Example Execution . 59
6.2.3 Algorithm Properties . 60
6.2.4 Discussion . 61

6.3 Decentralized Middleware with Asymmetric Processing . 62
6.3.1 Protocol . 62
6.3.2 Example Execution . 62
6.3.3 Algorithm Properties . 63

6.4 Related Work . 64

xi

7 1-Copy-Snapshot Isolation . 67

7.1 1-Copy-Snapshot Isolation . 68
7.1.1 Snapshot Isolation in a Non-Replicated System . 68
7.1.2 Snapshot Isolation in a Replicated System . 70

7.2 Primary Copy – Centralized Middleware . 71
7.2.1 Protocol . 72
7.2.2 Example Execution . 72
7.2.3 Algorithm Properties . 75

7.3 Update Anywhere – Centralized Middleware . 76
7.3.1 Protocol . 77
7.3.2 Example Execution . 79
7.3.3 Algorithm Properties . 79

7.4 Update-Anywhere – Decentralized Middleware . 81
7.4.1 Protocol Description . 82
7.4.2 Example Execution . 83
7.4.3 Algorithm Properties . 85

7.5 Snapshot Isolation vs. Traditional Optimistic Concurrency Control 86

7.6 Related Work . 86

8 Lazy Replication . 89

8.1 Bounding the Staleness in Lazy Primary Copy . 89
8.1.1 Boundary Types . 89
8.1.2 Basic Implementation . 90
8.1.3 Push vs. Pull Based Refresh . 91
8.1.4 Materialized Views . 92
8.1.5 Transaction Propagation . 92

8.2 Multiple Primaries . 94

8.3 Lazy Update Anywhere . 96
8.3.1 Distributed vs. Central Conflict Management . 96
8.3.2 Conflict Detection . 97
8.3.3 Conflict Resolution . 99

8.4 Related Work . 101
8.4.1 Bounding Staleness . 101
8.4.2 Replica Placement . 102
8.4.3 Conflict Detection and Resolution . 102

xii

9 Self-Configuration and Elasticity . 103

9.1 Self-healing . 104
9.1.1 Fault-Tolerant Measures During Normal Processing 104
9.1.2 Failure Types . 104
9.1.3 Failover: Client Side . 105
9.1.4 Failover: Server Side . 106
9.1.5 Recovery . 108

9.2 Self-Optimization . 110
9.2.1 Load-Balancing . 110
9.2.2 Other Optimization Techniques . 113

9.3 Elasticity: Self-Provisioning . 114
9.3.1 System Reconfiguration . 114
9.3.2 Deciding on the Right Number of Replicas . 115

9.4 Related Work . 116

10 Other Aspects of Replication . 119

10.1 Multi-Tier Architectures . 119
10.2 Quorums . 120
10.3 Mobile and Peer-to-Peer Environments . 121

A Transactions and the ACID Properties . 123

A.1 Atomicity . 123
A.2 Consistency . 123
A.3 Durability . 124
A.4 Isolation . 124
A.5 Distributed Transactions and 2-Phase Commit . 127

Bibliography . 129

Authors’ Biographies . 140

1

C H A P T E R 1

Overview

1.1 MOTIVATION

Many business services have gone online. For instance, online banking and online shopping have
become standard activities in our daily lives, and we expect a smooth user experience. The services
need to be available around the clock,and respond within seconds – whether there are many thousands
of users accessing the system at the same time or one is the only person in the world using it. How
do the service providers achieve this? In fact, they use the same principle that was applied in the
old times: replication. A generation ago, when banking and shopping were still tasks that forced
you to leave your home, when still real people were in charge of serving your requests, replication
was standard practice. The more customers lived in an area and demanded the service, the more
bank clerks and cashiers were hired. Backups were on call should the main staff become sick. Now,
compute nodes1 replace the human beings. Service execution is distributed over all nodes. If the
number of users increases, more nodes are added to share the load, guaranteeing that the quality of
service remains acceptable. If a node fails, a failover procedure transfers the tasks executing on the
failed node onto another node, making the failure imperceptible to the end user.

Replication is relatively straightforward if a service only requires computation but has no
critical data or information associated with it, i.e., the service is stateless. However, many services are
stateful, meaning they use and manipulate business critical data such as money transfers of a bank
client or purchase information in a bookstore. Such data are typically stored in a database system.
Then, coordination among nodes becomes more challenging. In fact, in many cases, not only the
service functionality is replicated but also the data so that each node can access its own copy of the
data. Informally, database replication means that the logical data items of the database (e.g., the
tuples in a relational database or the objects in the object-oriented world) have multiple physical
copies, located on different nodes. Database replication is precisely the topic of this book.

Database replication is used by many different applications,not only banking and e-commerce.
It is used for many different purposes and deployed over a range of computer configurations. It can
be small- or large-scale, affecting a few data items or terabytes of data. Obviously, given the diversity
of applications and environments, there is no one-fits-all replication solution. Instead, a replication
approach has to consider many different issues and must be specifically designed and adjusted to the
particular task on hand.

1A node could mean many things. In this book, node mostly refers to a physical machine. But it could also be a virtual machine
running on a physical computer, e.g., in the cloud.

2 1. OVERVIEW

Figure 1.1: Fault-tolerance architecture

Let us have a closer look at a replication solution. For better illustration, we use the example
of an online store selling some products, say puppets. The store’s web site offers functionality to
query the catalogue of puppets it offers and to purchase the ones selected. Behind the web server, the
company maintains a database that keeps all the product information including pictures, the stock of
each of the products and pricing information. It also maintains information about customers that are
currently or have recently been involved in a purchase. So why would our company want to replicate
the data?

The first reason is fault-tolerance. Our puppet company definitely wants to guarantee its cus-
tomers 24/7 access to their system, despite failures. A failure can mean that the process running the
database software fails, that the physical machine crashes, e.g., due to malfunctioning of the hard-
ware, or that the connectivity between the client and the server system is (temporarily) interrupted,
due to some network failure. To handle these failure cases, our company installs two copies of the
database on different nodes. In such a case, where the entire database is replicated, a node is also
often referred to as a replica. Now, if one of the replicas fails, then there is still one replica up and
running. The system is able to tolerate the failure of one of the copies. This is also referred to as
high availability as the service remains available despite failures. In most high-availability solutions,
the replicas reside in the same local area network to allow fast communication between the two as
depicted in Figure 1.1. A failure detection mechanism detects any failure, and the clients connected
to the failed node are reconnected to the available node where request execution simply resumes.
Such a solution, however, cannot handle network failures between clients and database as the client
will not be able to reach any of the replicas. To address this problem, wide area replication can be
used (see Figure 1.2). With wide area replication, the database replicas are geographically spread
and each client connects to the closest replica. Even if a remote replica is not reachable, access to the
local replica is usually provided. However, the latency of the wide area network introduces interesting
challenges, and failover becomes more complex due to the possibility of network partitions.

A second major use for replication is performance, as it can help to increase throughput and
reduce response time. Let us come back to our puppet store. As a first option, the company installs

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-000.jpg&w=143&h=109

1.1. MOTIVATION 3

Figure 1.2: Wide area architecture

Figure 1.3: Cluster architecture

multiple replicas within a local area network, resulting in what is often called a cluster (see Figure 1.3).
The cluster appears as one unit to the outside, and as requests come in, they are distributed across
the replicas. By adding new replicas, the system can scale up to increasing demands. In this case,
replication serves the purpose of scalability as it is able to provide increasing throughput.

However, as our company expands and attracts customers worldwide, it realizes that the
quality of service for users that are far away from the company’s headquarters suffers due to the
long network delay for each message exchange. Therefore, the company also replicates its database
at geographically strategic locations, providing acceptable response times to all their customers as
they can now connect to a close-by replica. We call this replication for fast local access. At the same
time, as more replicas are added across the world, the company is also able to increase the overall
throughput of their system.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-001.jpg&w=113&h=184
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-002.jpg&w=156&h=96

4 1. OVERVIEW

Figure 1.4: Primary copy approach

Cluster and wide area replication are not the only replication configurations. For example,
assume the company also sells their puppets to toy stores and large department stores. Its saleswomen
traverse the country, packed with their laptops to show the products to these stores and sell them in
large scale. For that, they replicate at least parts of the database onto their laptops. This is a scenario
where replicas are often in a disconnected mode, and the different replicas have quite different scale.
Nevertheless, the purpose of replication remains the same: data remain available for the sales people
although no network connection might exist, and the access is fast because it is local.

1.2 CHALLENGES
Despite its advantages, replication is not a straightforward technique to apply, and there are many
hurdles to overcome before one has a suitable replication solution that fits the application require-
ments. We will discuss some of the issues in this book. At the forefront will be replica control:
assuring that data copies remain consistent. Other issues are the architectural design options and
autonomic support to provide self-management.

1.2.1 REPLICA CONTROL
When a data item is updated, its physical copies need to be updated. As easy as this might sound, this
task, called replica control, is not a straightforward approach as there are many possible approaches,
each having its advantages and its drawbacks depending on the application and the configuration.

Let us illustrate this with an example. Assume our puppet company has decided to deploy a
cluster of database replicas as depicted in Figure 1.4. Each node maintains a full copy of the database.
When a client request arrives, it is redirected to one of the replicas that controls its execution. In
most applications, there are two major request types: update requests, such as purchase() in the
figure, update at least one data item; and read-only requests, such as check-status(), only read

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-003.jpg&w=227&h=142

1.2. CHALLENGES 5

data items. Our company employes a Read-one-write-all (ROWA) replication strategy: the update
of a data item is performed at all replicas, while a read operation accesses a single replica. ROWA
can be implemented in various ways. The fundamental differences between existing approaches lie
in where and when copies are updated [Gray et al., 1996]. In regard to where, our company uses a
primary copy approach. There is one database replica that is considered the primary (replica). It holds
the primary copy of the database. The other replicas hold secondary copies and are called secondary
(replicas). All update requests are sent to the primary replica and are first executed there. An update
request might read and write several data items. All writes are forwarded to the secondaries where
they are also executed. Read-only requests can be executed at the primary or the secondaries. They
can execute completely locally without coordination with other replicas.

In regard to when copies are updated, our company uses an eager approach, also referred to
as synchronous replication. The secondaries apply the changes to their own copies immediately when
they receive them, and then send a confirmation to the primary. Only when the primary knows that
all secondaries have the changes, it confirms to the user that the execution was successful.

Primary copy vs. update anywhere. The use of a primary replica forces all updates to be executed
first at a single node. This simplifies the coordination of concurrent update requests. However, it has
several disadvantages. For example, the primary can become a bottleneck. The alternative is to use
an update anywhere approach (also called update everywhere). Each replica accepts both update and
read-only requests and is responsible for their execution. While it avoids the pitfalls of the primary
copy approach, it has its own problems. In particular, it is much harder to guarantee consistency as
data copies might now be updated concurrently at different replicas.

Eager vs. lazy. By using eager replication, the primary only returns a confirmation to the user once
all secondaries have the updates executed. Thus, copies are “virtually" consistent. However, clients
might experience prolonged response times due to the replication coordination. Especially with wide
area replication, this can become a serious problem. Also network connectivity can be spotty in wide
area networks, and the entire service might render unavailable if one replica is not reachable due to
network problems. The alternative is to use lazy replication, also called asynchronous replication. With
lazy replication, an update request is completely executed at one replica, which propagates the writes
to the other replicas after returning a confirmation to the client. Thus, the coordination tasks do not
affect the user. However, maintaining consistency is more difficult, as the same update takes place
at different times at the various replicas.

Additionally, when lazy replication is combined with update anywhere, two updates concur-
rently submitted to two replicas can update the same data item and succeed. Later, when the updates
are propagated, the system has to detect such conflict, possibly undo one of the updates despite the
fact that the client was already informed that the update was successful.

Transactions. Although we have not yet mentioned it, but to many readers, it will probably already
be obvious that many of the applications that require replication will also require transactions and
their properties – in particular atomicity, isolation and durability. In fact, it is pretty straightforward

6 1. OVERVIEW

to map the execution of a client request to a transaction. Each request reads and/or writes several data
items.From the outside, the execution of the request should appear as one logical execution unit.That
is exactly the definition of a transaction. A transaction is a user-defined sequence of read and write
operations on data items, and the system provides a set of properties for their execution. Atomicity
guarantees that a transaction either executes entirely and commits, or it aborts not leaving any
changes in the database. Thus, database systems provide rollback mechanisms to abort transactions
and provide distributed commit protocols for distributed transactions, i.e., for transactions that
access data items residing on different nodes. Isolation provides a transaction with the impression
that no other transaction is currently executing in the system. Concurrency control mechanisms
such as locking are in charge of that. Durability guarantees that once the initiator of the transaction
has received the confirmation of commit, the changes of the transaction are, indeed, reflected in
the database (they can, of course, later be overwritten by other transactions). Sophisticated logging
protocols guarantee durability despite individual node failures.

Replication does not make it easier to achieve these properties. In fact, replica control, atomic
commit protocols and concurrency control often work tightly together to let a replicated system
appear as a single transactional system. In this book, transactions will be first-class citizens in con-
sidering and analyzing replica control algorithms. Note that while the next chapter describes the
transactional properties in more detail, we assume the reader to be familiar with transactions and
the basic mechanisms to implement them. Appendix A provides a short introduction if this is not
the case.

In total, Chapters 2, 3, 6, 7 and 8 are dedicated to replica control. Chapter 2 introduces con-
sistency criteria, extending the traditional atomicity, consistency, isolation and durability properties
of transactions to a replicated environment. Chapter 3 provides a first introduction to some basic
replication protocols exploring in more detail the design choices eager vs. lazy, and primary copy
vs. update anywhere. The following chapters then discuss individual replica control strategies in
more detail. Chapter 6 is dedicated to eager replication. As snapshot isolation has become a very
popular concurrency control mechanism in recent years, we dedicate the full Chapter 7 to it. Finally,
Chapter 8 focuses on lazy replication.

1.2.2 OTHER ISSUES
Transforming an abstract replication solution into a concrete implementation is not a straightforward
endeavor. There are many design choices when architecting a solution for a concrete environment.
In Chapter 4, we present several important architectural patterns. One important issue is where the
replication logic is implemented: within the database system or as an external middleware layer.
The choice has strong influence on the replica control algorithms, performance, and maintainability.
Another question is how write operations are actually executed at the replicas. Efficient handling
is crucial as they have a major impact on the scalability of the system. Partial replication is another
aspect. With partial replication, each data item might only be replicated on some of the nodes.
The idea is to reduce update costs. An update has to be applied to all copies of a data item. The

1.2. CHALLENGES 7

more copies exist, the higher is the update load in the system. Partial replication provides a tradeoff
between providing enough copies to be able to distribute read requests and keep the update costs
low.

Chapter 4 also introduces the main ideas behind using group communication systems to support
database replication. Group communication systems provide powerful multicast and group mem-
bership protocols that turn out to be very useful to manage a replicated system and support replica
control.

Chapter 5 discusses performance.We do not provide any performance comparisons of the many
replication approaches that exist, as they often depend on specific configuration and engineering
details. But as performance analysis plays such a crucial role in building the right solution, we do not
want to completely ignore it. Therefore, we present a simple analytical model that provides insights
into how far a replicated database system can actually scale. We only consider a few parameters, but
they already indicate the level of variation among design choices, and how small optimizations can
have a huge influence on the performance.

Chapter 9 presents the self-properties a replicated system should provide. A replicated system
is never static. Nodes might fail, new nodes might be added to the system, and the load must be
dynamically distributed across the nodes. Chapter 9 describes how a replicated system can manage
these tasks in an autonomic way. It describes how a replicated system can be self-healing by automat-
ically removing failed nodes from the system and recovering them after restart, self-optimizing by
autonomously distributing varying load across replicas, and self-provisioning by determining dynam-
ically how many nodes are required in order to handle the current workload. These self-properties
are the fundamental building blocks for elastic computing, as it is now required for cloud computing.

Finally, Chapter 10 briefly outlines other topics related to database replication that are out of
the scope of this book. For instance, databases are typically deployed as the backend-tier of multi-tier
architectures, and data are often distributed across all tiers. Replication of any of the tiers should
be coordinated with the other tiers. This chapter also shortly outlines other domains, such as data
replication in mobile environments and peer-to-peer systems.

9

C H A P T E R 2

1-Copy-Equivalence and
Consistency

Replica control and the task of keeping data copies consistent is one of the main challenges when
architecting a replication solution. In this chapter, we define what consistency means for replicated
transactional systems.

2.1 REPLICATION MODEL

A database consists of a set of data items x, y, In a replicated database, there is a set of database
nodes RA, RB, ... each of them having copies of data items. Thus, we refer to x, y, ... as logical data
items, and each logical data item x has physical copies xA, xB, ... where RA is the node (replica) on
which xA resides.

From the perspective of the application, a transaction is a sequence of read and write operations
on the logical data items of the database.The transaction is ended with a commit or an abort request.
The latter indicates that the updates executed so far need to be rolled back.

One of the tasks of replica control is to map the operations on the logical data items onto
operations on the physical copies. The most common execution model is to translate a logical read
operation ri(x) of transaction Ti to one physical read operation ri(x

A) on one particular copy xA.
And a logical write operation wi(x) is mapped to physical write operations wi(x

A), wi(x
B), ... on

all copies of x. This is called a read-one-write-all (ROWA) approach. Thus, a transaction Ti can have
sub-transactions on many nodes, namely on each node on which it accesses at least one physical
copy.

For simplicity of the discussion,we assume in this and most of the other chapters full replication
where each node in the system has a full copy of the database, i.e., copies of all data items.The terms
“node" and “replica" are then used interchangeably. With full replication, an update transaction, i.e.,
a transaction that has at least one write operation, has sub-transactions on all nodes, while read-only
transactions typically only access the copies of a single node, albeit it is possible to distribute the
reads among several nodes.

ROWA works fine because in most applications reads by far outnumber writes. Hence, it
makes sense to keep the overhead for read operations as small as possible. ROWA is not suitable
when failures occur, as an update transaction cannot complete anymore once a single copy becomes
unavailable.Therefore, a derivation is the read-one-write-all-available, or ROWAA, approach where

10 2. 1-COPY-EQUIVALENCE AND CONSISTENCY

write operations execute only on all copies that are currently available. We will see later what that
exactly means.

Performing the mapping between logical and physical operations is not sufficient. Replica
control must be tightly coupled with the mechanisms that achieve the transactional ACID properties:
atomicity, consistency, isolation and durability. In fact, the ultimate goal is that the replicated system
provides the same semantics as the original non-replicated system. This is what is termed as 1-
copy-equivalence: the replicated system behaves like a 1-copy non-replicated system [Bernstein et al.,
1987]. The ACID properties are all related to providing well-defined consistency in the advent of
concurrent access and failures. When replicating a database, due to the distributed execution and
the possibility of node failures, if no extra measures are taken, one can easily end up with transaction
executions that would be disallowed in a non-replicated system.This means that designing a database
replication solution implies to take care of 1-copy equivalence. In this chapter, we look at each of
the ACID properties individually and discuss what it means to provide this property in a replicated
environment, i.e., what does it mean to extend it with 1-copy-equivalence.

Note that while we attempt to make this chapter self-contained, we refer to Appendix A for
a detailed introduction to transaction management in a non-replicated system.

2.2 1-COPY-ISOLATION

Concurrent transactions need to be isolated from each other to maintain the consistency of the
database. Current non-replicated systems provide a whole range of isolation levels, each of them
achieving a different degree of consistency. These isolation levels have to be extended to understand
the global execution in a replicated environment. Ideally, the execution in a replicated system provides
the same level of isolation as the execution in a 1-copy-system system. Therefore, we refer to this
property as 1-copy-isolation. This book has a closer look at two isolation levels.

1-copy-serializability. The most well-known and strongest isolation level in a non-replicated
database is serializability [Bernstein et al., 1987]. Serializability requires the concurrent execution of
a set of transactions to be equivalent to a serial execution of this set. The most common definition
of equivalence refers to the ordering of conflicting transactions. Whenever two operations conflict,
that is, they access the same data item, are from two different transactions, and at least one of them
is a write operation, then their order should be the same in the concurrent and the serial execution.
Figure 2.1 shows three executions, also called histories or schedules. Time is moving downwards.
There are two transactions. T1 reads data item x and y and writes z, and T2 reads x and z, and
writes y. In the first schedule S1, T1 executes completely before T2, and in the second schedule S2,
T2 executes completely before T1. That is, both are serial schedules. The third execution, S3, is not
serial (operations are interleaved) but serializable as it is equivalent to the second schedule.There are
two conflicting pairs of operations (r1(y)/w2(y) and (r1(z)/w2(z)) and in both cases, T2’s operation
executes before T1’s operation. Finally, the fourth execution is not serializable, as the first conflict
is executed as in S1, and the second as in S2. Serializability can be easily shown by building the

2.2. 1-COPY-ISOLATION 11

Figure 2.1: Serial, serializable and unserializable schedules

Figure 2.2: Locally serial, globally unserializable schedule

serialization graph of an execution where transactions are nodes and there is an edge from Ti to Tj if
the two transactions have conflicting operations and Ti ’s operation is executed before Tj ’s operation.
If the serialization graph is acyclic, the execution is serializable. Figure 2.1 shows the serialization
graphs below the schedules, and we can see that S4 is unserializable because its graph has a cycle.

Moving to a replicated system, 1-copy-serializability extends this notion to the concurrent
execution in a replicated system. Informally, 1-copy-serializability states that transaction execution in
a replicated system should be equivalent to a serial execution of these transactions in a non-replicated
or 1-copy-system. But what does this really mean? In a non-replicated system, there is only one copy
on which all operations are executed while in a replicated system different operations execute on
different copies.

A first attempt would simply indicate that as long as the executions at each replica are seri-
alizable, we are fine. Let us have a closer look at this. Figure 2.2 shows the execution of the same
two transactions T1 and T2 at two replicas RA and RB . T1 reads x and y at replica RA and then
writes z at both replicas. T2 reads x and z at replica RB and then writes y at both replicas. If you

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-004.jpg&w=227&h=131
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-005.jpg&w=127&h=114

12 2. 1-COPY-EQUIVALENCE AND CONSISTENCY

look only at the local execution at RA, then this execution is serializable. In fact, it is serial with T1

executing before T2. Also the execution at RB is serial, with T2 executing before T1. The problem
is that this execution is obviously not serializable at the global level as the transactions conflict and
they are executed in different order at the two replicas. There should be one common order. How
can we formally express that something like this is not 1-copy-serializable?

Clearly, it is not enough that the execution at each replica is locally serial or serializable, but
there must also be a relationship between them. The idea is to find a serial schedule over the logical
data items, that is, a serial 1-copy-schedule, that orders all conflicting operations in the same way
as all the local schedules in the replicated execution. Then, we can say that a replicated execution is
1-copy-serializable if there exists a serial 1-copy execution such that whenever one local schedule
executes one of Ti ’s operations before a conflicting operation of Tj , then Ti is executed before Tj in
the serial 1-copy execution. Looking at the example above, RA requires the order T1 → T2, and RB

requires T2 → T1. Obviously, there is no 1-copy history that would be able to obey both of these
orderings, and thus, 1-copy-serializability is not given.

Similar to serializability, we can check 1-copy-serializability with the help of serialization
graphs. The serialization graphs in Figure 2.2 below the local executions at RA and RB are acyclic.
In order to test for 1-copy-serializability, we can simply build the union of all the local serialization
graphs of the executions at all replicas. Only if this union is acyclic, the global execution is 1-copy-
serializable. In the example, the global serialization graph contains a cycle, and thus, the execution
is not 1-copy-serializable.

Note that this rather informal description assumes that all replicas commit the same set of
update transactions, and it does not consider node failures. Also, it is only valid if we assume full
replication and a ROWA approach. A more formal definition can be found in Bernstein et al. [1987]
and Kemme [2009].

In a non-replicated system, serializability can be achieved through a variety of concurrency
control mechanisms, such as strict 2-phase locking or optimistic concurrency control. Given the
example above, it is easy to see that it is not enough in a replicated system to let each node run its
own concurrency control mechanism without coordination. Instead, local concurrency control needs
to be extended to a replication concurrency control in order to achieve isolation at the global level.
The next chapter presents several protocols based on strict 2-phase locking.

1-copy-snapshot-isolation. There exist many isolation levels that provide less isolation than se-
rializability. They allow more interleaving between transactions but some anomalies can oc-
cur [Berenson et al., 1995]. In this book, we only look at the very popular isolation level called
snapshot isolation. It provides read operations a committed snapshot of the database as of transaction
start, and only considers write/write conflicts. Commercial systems implement this isolation level by
maintaining several versions for each data item. Avoiding conflicts between readers and writers has
huge potential to increase concurrency. Snapshot isolation allows some non-serializable executions
but avoids most of the well-known anomalies that can occur under lower levels of isolation.

2.3. 1-COPY-ATOMICITY 13

Figure 2.3: Coordination to achieve 1-copy-atomicity

In order to work in a replicated environment, snapshot isolation can be extended to 1-copy-
snapshot-isolation in similar spirit as serializability. The execution in a replicated environment pro-
vides snapshot isolation if there exists a 1-copy execution that provides snapshot isolation such
whenever one local schedule in the replicated execution performs two conflicting operations, the
1-copy-execution performs these two operations in the same order. We introduce snapshot isolation
and 1-copy-snapshot-isolation in much more detail in Chapter 7.

2.3 1-COPY-ATOMICITY

Atomicity guarantees that a transaction executes in its entirety and commits, or it aborts and does
not leave any effect in the database. That is, in case of abort any partial results have to be rolled
back. A typical reason for transactions to fail is because of application semantics (e.g., balance of
an account may not be below zero). Extending atomicity to 1-copy-atomicity in a replicated setting
means that not only at a single replica all or none of the operations succeed, but that a transaction
has to have the same decision of either all (commit) or nothing (abort) at all replicas at which it
performs an operation. For the ROWA approach that we assume here, this means, all replicas in case
of an update transaction, but only one replica in case of a read-only transaction. That is, all replicas
should agree on the set of update transactions that are committed. Only then the 1-copy property
is provided because a transaction that is committed at some replicas and aborted at others would be
impossible in a 1-copy system. To achieve 1-copy-atomicity, some form of agreement protocol has
to be executed among the replicas that forces all to make the same decision about the outcome of
the transaction (Figure 2.3). Furthermore, if a transaction is aborted, its intermediate results need
to be undone at all replicas. This second issue can be dealt with locally at each replica with the same
mechanisms used in a non-replicated system.

A special atomicity case occurs when failures occur. In a non-replicated system, if a transaction
was active (neither committed nor aborted) at the time of the failure, when the node restarts, it is no
longer possible to commit the transaction. Thus, the system aborts it to make sure that it does not
leave any partial changes in the system. We discuss the affect of active transactions in a replicated
system further down.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-006.jpg&w=113&h=100

14 2. 1-COPY-EQUIVALENCE AND CONSISTENCY

2.4 1-COPY-DURABILITY

The durability property is related to atomicity. Durability guarantees that committed transactions
are not lost even in the case of failures. When a node fails, it is typically restarted and the database
recovered. In order to ensure durability, enough information has to be written to stable storage before
the commit, e.g., via logging, such that at the time of recovery, the changes of committed transactions
can be reconstructed.

Enforcing durability locally is not sufficient in a replicated system. When a node fails the
other nodes usually continue execution, as a ROWAA approach requires only to write the available
copies. When a node restarts and recovers, it does not only need to redo transactions that had been
committed locally before the crash but also incorporate the changes of transactions that committed
in the rest of the system during its downtime. This means a recovering node has to perform a global
recovery in addition to the local recovery.

2.5 RELATIONSHIP BETWEEN ISOLATION, ATOMICITY
AND DURABILITY

Isolation, atomicity and durability become highly related when we consider what happens in failure
cases, in particular, when a replica fails when a transaction was in the middle of committing. In
distributed database systems, such failures are a case for atomicity: atomic commit protocols such
as 2-phase commit1 among participants guarantee that all nodes decide on the same commit/abort
outcome of a transaction despite failures. If one of the nodes fails before commit, all nodes need to
abort the transaction as the failed node will abort the transaction upon performing local recovery.
In cases where there is no replication, this is important because all updates on all data items need to
be committed for the transaction to commit as a whole.

Replicated systems are conceptually different to a purely distributed database. In a replicated
system using ROWAA, it is generally fine for a transaction to be still active on a replica that fails as
long as it properly terminates at the available replicas.The failed replica’s local recovery will undo the
effects of all transactions that were active at the time of the crash and the global recovery procedure
used for durability will transfer the changes of transactions that committed during the downtime.

Interestingly, atomic commit protocols also guarantee that a node cannot commit a transaction
shortly before it fails but the others do not. Lazy protocols, as we have shortly mentioned in the
introduction chapter, allow a transaction to commit locally at one replica and the updates are only
propagated after commit. If the replica fails before the propagation, the other nodes will never receive
the transaction.The transaction is lost. One can consider this “loss of durability" as the changes were
not really durably entered into the available system. But we consider it a loss of atomicity. When
the soon-to-be-failing replica commits the transaction, it was still available, thus, 1-copy-atomicity
would require the other nodes to also commit the transaction.

1See Appendix A for a more detailed description of 2-phase-commit

2.6. 1-COPY-CONSISTENCY 15

Hence, what is needed for a ROWAA approach to behave correctly in regard to 1-copy-
atomicity is that when a replica makes a commit/abort decision (whether it is available or fails
shortly after making the decision), all replicas that are available and continue execution make the
same decision.

A loss in 1-copy-atomicity also influences 1-copy-isolation and 1-copy-durability. As we
discussed before, we can determine whether an execution is 1-copy-serializable by building the
union of all local serialization graphs and check for cycles. Assume a failed node has committed a
transaction while the other available nodes have not. It is not even clear how this transaction should
be represented in the graph. Furthermore, when a failed replica recovers, one has to make sure that
the results of these transactions are undone despite the fact that the transaction committed locally,
as it did not commit in the rest of the system.

In the following chapters, when we discuss various replica control protocols, we analyze in
detail the 1-copy-isolation and 1-copy-atomicity properties that each of them provides. We also
distinguish whether protocols achieve 1-copy-isolation only in a failure-free environment, or also
when failures can occur. 1-copy-durability is discussed specifically in Section 9.1, as its main task –
bringing the state of the recovering replica up-to-date, is relatively independent of the replica control
mechanism chosen.

2.6 1-COPY-CONSISTENCY

The only remaining ACID property that has not been discussed is consistency. Consistency is an
overloaded term, used with different meanings in different contexts. In the traditional definition
of the ACID properties, however, consistency refers to the requirement that a transaction, given
a consistent database state, only performs changes that lead to another consistent database state.
That is, the code of the transaction is correct from an application point of view and does not break
the application-defined consistency of the database. The correctness of the transaction code is the
responsibility of the transaction programmer. However, databases provide aids to monitor their
correctness, e.g., by automatically checking pre-defined integrity constraints. The most common
integrity constraints are primary keys that have to be unique and foreign keys that refer to records
in other tables.

Not all replication protocols automatically guarantee 1-copy-equivalence if integrity con-
straints are defined over the database [Lin et al., 2009]. The problem is that databases, in order to
guarantee integrity constraints, read additional data. As a formal discussion on integrity constraints
can become quickly very complex, it will not be presented in this book.

2.7 SESSION CONSISTENCY.

Another consistency criterion that is somewhat related to 1-copy-isolation is session consis-
tency [Daudjee and Salem, 2004]. Session consistency is the property that guarantees that a client
observes its own updates. Clients often open sessions to the database system and submit several

16 2. 1-COPY-EQUIVALENCE AND CONSISTENCY

Figure 2.4: Violation of session consistency

transactions in a row. If one of the transactions updates a data item, then the next transaction should
be able to read the change (unless, of course, a transaction in between has overwritten it). Session
consistency is not captured by isolation levels such as serializability and snapshot isolation as they do
not provide any guarantees for inter-transaction dependency. Nevertheless, non-replicated systems
naturally provide session consistency as a committed change always becomes visible for transactions
that start later.

In a replicated system, however, this depends on how client connections are dealt with. If
requests from a client are always executed by the same replica, then session consistency is again
trivially enforced. However, as shown in Figure 2.4, when requests from the same client are processed
by different replicas, it might happen that an update transaction T1 is processed by replica RA and
then a later transaction T2 is executed by replica RB that still has not received or processed T1’s
updates, Thus, T2’s reads do not see the values written by T1 but a previous state. 1-copy session
consistency is violated. In particular, this can happen with lazy replication as updates are only sent
to other replicas after transaction commit.

2.8 EVENTUAL CONSISTENCY

Some protocols do not enforce any of the 1-copy-ACID properties because of the costs associated
with achieving them.Thus, there exists a wide range of approaches that avoid these costs by relaxing
the consistency model. In particular, we will see in the next chapter, that lazy update anywhere
protocols belong into this category.Nevertheless, even those protocols attempt to provide a minimum
of consistency [Malkhi and Terry, 2007; Saito and Shapiro, 2005; Vogels, 2008]. The best known
minimalistic consistency criterion is eventual consistency. It guarantees that, should update processing
cease for a sufficiently long time, the different copies of a data item eventually reach the same value.
There are different techniques to attain eventual consistency.

In its basic definition, eventual consistency does not care about transactions. Instead, it looks
at each data item individually. Thus, it could happen that there are two transactions T1 and T2,
both updating data items x and y, and at the end of execution and update propagation, x ’s last
value reflects the update of T1, and y ’s value reflects the update of T2. 1-copy-serializability is clearly

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-007.jpg&w=113&h=85

2.8. EVENTUAL CONSISTENCY 17

violated. There exist some approaches that aim at finding an eventual consistent solution that takes
schedules into account [Kermarrec et al., 2001].

The promise of being consistent “some time in the future" is a far cry from 1-copy equivalence
approaches and might be unsatisfactory for many applications. Therefore, consistency levels have
been defined that bound the inconsistency that is possible. For example, the value of a copy may
not differ from the true value or the values of other copies by a certain threshold, or a copy might
not miss an update by more than a certain time. We will provide more details on these bounded
consistency levels in Chapter 8 when we present algorithms that achieve them.

19

C H A P T E R 3

Basic Protocols
In the introduction, we briefly discussed that replica control algorithms can be categorized by two
parameters: where update transactions are coordinated and when updates are sent to other replicas.
In principle, a protocol can be either eager or lazy, and follow a primary copy or update anywhere
approach. From there, we can derive four basic categories: eager primary copy, eager update anywhere,
lazy primary copy and lazy update anywhere. In this chapter, we give an example protocol for each
of the categories, describe the general properties, and discuss the advantages and disadvantages of
each of them in detail. Understanding the main implications of each of these categories is crucial in
choosing the right replica control protocol for a given application and environment.

Replica control has to be coupled with the concurrency control and atomicity mechanisms of
transaction management. For simplicity of illustration, our protocols are all based on strict 2-phase
locking, also referred to as strict 2PL (we refer readers not familiar with strict 2PL to Appendix A for
a short introduction), and ignore any form of failure. The protocol description also does not include
unexpected aborts (e.g., due to the violation of an integrity constraint) or abort requests from the
application.

We assume the same replication model as in Chapter 2. The database consists of logical data
items x, y, ..., and has replicas RA, RB, ..., each having a full copy of the database. A transaction
Ti performs a sequence of read operations ri(x) and write operations wi(y) on data items and then
terminates with a commit request ci . A transaction submits all its operations to one replica. This
replica is called the local replica of the transaction, and the transaction is called local at this replica.We
assume a ROWA approach where read operations are only executed at the local replica, and writes
are executed at all replicas. Executing the writes at a remote replica creates a remote transaction.
Thus, each logical update transaction has a local transaction at the local replica executing all reads
and writes, and a remote transaction at each other replica containing only the write operations.

3.1 EAGER PROTOCOLS

3.1.1 PROTOCOL DESCRIPTION
In case of eager replication, our primary copy and update anywhere protocols are similar. The only
difference is where update transactions can be local. In the case of update anywhere, any transaction
can be submitted to any replica. In the case of primary copy, an update transaction has to submit
all its operations to the primary replica. Read-only transactions, in contrast, can choose their local
replica.

20 3. BASIC PROTOCOLS

Upon: ri(x) for local transaction Ti

1: acquire shared lock on x

2: return x

Upon: wi(x) for local transaction Ti

{for primary copy: only allow at primary replica}
3: acquire exclusive lock on x

4: write new value of x

5: send wi(x) to remote replicas
6: wait until receive ok from all remote replicas
7: return ok

Upon: commit request for local transaction Ti

8: if Ti update transaction then
9: send commit (Ti) to all replicas

10: commit Ti

11: release locks of Ti

12: return committed
Upon: receiving wj(x) of remote transaction Tj

{for primary copy: from primary replica}
13: acquire exclusive lock on x

14: write new value of x

15: send back ok
Upon: receiving commit (Tj) for remote transaction Tj

{for primary copy: from primary replica}
16: commit Tj

17: release locks of Tj

Figure 3.1: Eager protocols

Figure 3.1 depicts the basic structure of the combined replica and concurrency control pro-
tocols. The text in italic indicates the steps that are specifically needed for replica control. Other
steps reflect the standard locking-based execution that is also needed in a non-replicated system. A
transaction starts implicitly when it submits its first operation.

• Read operations are handled as in a non-replicated system (lines 1-2). They acquire a shared
lock, and then return the current value of the data item.

• A write operation also performs first the standard steps (lines 3-4), acquiring an exclusive lock
and writing the new value of the data item. Then, the write operation is sent to the remote
replicas because a write operation has to be performed at all replicas (line 5). Only when the local
replica has the ok’s from all remote replicas (line 6), it informs the client about the successful
execution (line 7).

3.1. EAGER PROTOCOLS 21

Figure 3.2: Eager primary copy execution example

• At the remote replicas, the remote transaction is handled similar to local transactions. When a
write operation arrives, an exclusive lock is requested, and the write operation executed (lines
13-14). Then, the local replica is informed about the successful execution (line 15).

• When the transaction submits the commit request, if it is an update transaction, first all remote
replicas are asked to commit (lines 8-9 and 16-17), and only then the transaction is committed
locally, the locks released and the confirmation returned to the client (lines 10-12).

3.1.2 EXAMPLE EXECUTION
Figure 3.2 shows the example of an execution under the eager primary copy protocol with two
transactions.Transaction T1 first reads x and then writes it.Transaction T2 is a read-only transaction
reading x and y. RA is the primary replica and RB a secondary replica. Time passes from top to
bottom. Client requests and their responses are shown as arrows going to/from a replica. Commu-
nication between replicas is shown as arrows. Acquiring a shared/exclusive lock on data item x is
denoted as S(x)/X(x) and releasing a lock on x is denoted as U(x) (U stands for unlock).

T1 is submitted to RA (it has to because it is an update transaction), and T2 to RB . Read
operations are executed locally. After executing w1(x) locally, RA forwards it to RB . At RB , T2

currently holds a shared lock on x, thus, T1 has to wait until T2 commits and releases its locks. Then

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-008.jpg&w=168&h=246

22 3. BASIC PROTOCOLS

T1 can get the exclusive lock on x, execute, and return the ok to RA. Only now the write operation
completes. At commit time, RA has to inform RB and the transaction commits at both replicas.

3.1.3 EAGER PROPERTIES
Eager protocols are characterized by committing update transactions at all replicas in an atomic way.
This provides strong properties.

• First, read operations never read stale data. Once they get a lock on a data item, it is guaranteed
that this is the latest committed value in the system.

• Second, 1-copy-serializability is provided. As we have discussed in Chapter 2, 1-copy-
serializability is violated if the union of the local serialization graphs has a cycle. For simplicity
we only show here that a cycle of length two, i.e., a cycle of type Ti → Tj → Ti , is impossible.
The reasoning for longer cycles is similar. The cycle is caused by two pairs of conflicting oper-
ations which we denote as op1i/op1j and op2i/op2j . From each pair, at least one operation
must be a write operation. Let us assume that one conflict is on data item x and occurs on
replica RA in the order op1i (x

A) < op1j (x
A), and the other is on data item y and occurs on

replica RB in the order op2j (y
B) < op2i (y

B). This means that Ti acquires the lock on xA and
Tj on yB . In order for Tj to execute op1j (x

A), Ti must release the lock on xA. Using strict 2PL
it will only do so after having acquired the lock on yB . But Tj will only release its lock on yB

once it has the lock on xA. Therefore, this execution is not possible under strict 2PL 1.

• A third property is that 1-copy-atomicity is easily provided if there are no failures because
at commit time all update operations have successfully executed at all replicas. Therefore, the
commit will succeed at all replicas.

• In order to handle failures, some extensions are necessary. First, if a replica fails, a failure
detection mechanism needs to inform all surviving nodes. Second, active transactions that were
local on the failed replica have to be terminated properly. We have to consider two cases.
In case (i), the client has not yet submitted the commit request. An example is shown as
timepoint tp1 in Figure 3.2.The surviving replica RB does not know whether it has received all
write operations of T1 so far. If there is more than one surviving replica, it is also not guaranteed
that all have received the same set of write operations. Therefore, aborting the transaction
is the easiest to achieve 1-copy-atomicity. In case (ii), the client has already submitted the
commit request. This is shown as timepoint tp2 in Figure 3.2. The problem with the protocol
described so far is that it is possible that the local replica has sent the commit request to some
of the remote replicas but it crashes before all receive it. Or it commits the transaction without
anybody having received the commit request. In this case, 1-copy-atomicity would be violated
as some would commit, others abort the transaction. The use of an agreement protocol, such as
the 2-phase commit protocol described in Appendix A, is necessary. This will guarantee that
either all replicas commit the transaction or all abort it.

1In fact, it will result in a deadlock that will prevent the violation of 1-copy-serializability.

3.1. EAGER PROTOCOLS 23

These strong properties, however, come with a price.
• First, a transaction can only commit when all replicas have executed the write operations.Thus,

execution time is determined by the slowest node.

• Second, the 2-phase-commit protocol is expensive as it can block in case of failures, and it
requires several sequential log writes to stable storage. We discuss in Chapters 6 and 7 some
protocols that alleviate these problems, albeit still providing 1-copy-atomicity.

• Third, the combination of eager propagation and locking can delay execution considerably, as
a long-running read-only transaction at any of the replicas can block an update transaction.
Just assume in the example of Figure 3.2 that T2 is a very long transaction. The more replicas
there are in the system, the more likely it will be that there are conflicts between the readers
and writers, limiting the possible scaleout. Thus, there have been many protocols proposed that
avoid conflicts between update and read-only transactions executing on different replicas, or
that eliminate locks and reduce the conflict rate between readers and writers, such as approaches
based on snapshot isolation. We discuss them in Chapters 6 and 7.

3.1.4 PRIMARY COPY VS. UPDATE ANYWHERE
The obvious disadvantages of primary copy. Looking at the base protocol in Figure 3.1, it is easy
to see that primary copy is more restrictive than update anywhere as all update transactions have to
be submitted to the primary replica. This leads to several disadvantages.

• First, we lose replication transparency. Clients need to know that the system is replicated and
submit transactions according to their type to the primary or the secondaries. If the replicated
system wants to transparently redirect update transactions to the primary and read-only trans-
actions to the secondaries it must know at start of transaction its type. Several client interfaces,
such as JDBC, provide a mechanism to declare a transaction read-only which can facilitate this.
Update anywhere, in contrast, only requires the client to discover one of the replicas (we will
see in Chapter 4 how to perform such replica discovery in a transparent manner to the client)
and then submit all transactions, independent of their type, to this replica.

• A second disadvantage of primary copy is that the primary replica can become a bottleneck.
Although the write operations are eventually executed at all replicas, the primary has to execute
the read operations of all update transactions. If there are many update transactions, it might
not be able to handle this load. Update anywhere is thus better suited for load distribution.
Note, however, that in a read-intensive environment, this might not really be an issue.

• Finally, it is more difficult to achieve fault-tolerance with a primary copy approach. If the
primary fails, another replica has to take over as primary requiring some fault-tolerant primary
election mechanism.

The not-so obvious disadvantages of update anywhere. So why would anybody use a primary copy
approach? A major problem of eager update anywhere protocols that use locking is the possibility
of a distributed deadlock. Let us have a look at the execution in Figure 3.3. T1 and T2 both write

24 3. BASIC PROTOCOLS

Figure 3.3: Distributed deadlock with eager update anywhere

x. T1 is submitted to replica RA and T2 to RB . Each transaction first gets the exclusive lock on x

at its local replica and then forwards the operation to the remote replica where it is blocked. This
scenario results in a deadlock, but none of the replicas can see this locally. As distributed deadlock
detection is complex, it is likely that some timeout mechanism will eventually trigger the abort of
one or both transactions. In the example, T1 is the first to timeout, and RB cannot return an ok to
RA but has to inform it about the abort. Then, T2 can get the necessary locks, execute its operation
and succeed. Handling all possible cases makes the protocol considerably more complex. Setting
timeouts is tricky as a too short value causes many unnecessary aborts while a too high value blocks
data items for a long time which can have a cascading affect and lead to deterioration. Gray et al.
[1996] have argued that the likelihood of deadlock increases with a factor N3 if N is the number of
replicas in the system.

In contrast, it is simple to circumvent such deadlocks in the primary copy approach. The
primary replica simply sends all write operations in FIFO order, and the remote replicas execute
them in this order. The writes might only conflict with reads of local transactions. There might be
deadlocks but they are always locally detectable at one replica. At the secondaries, there must be a
read-only transaction involved in such deadlocks, which can then be the one to be aborted. Thus,
the secondaries can guarantee that the writes will succeed.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-009.jpg&w=141&h=242

3.2. LAZY PROTOCOLS 25

In fact, a simplified variant of primary copy, called primary/backup, is frequently used for high-
availability solutions. In this case, all transactions, whether update or read-only, are executed at the
primary replica. The primary replica propagates all writes to the backups as in the primary copy
approach. If the primary fails, one of the backups becomes the new primary. Clearly, in this case,
replication is only used for fault-tolerance but not for scalability.

3.2 LAZY PROTOCOLS
3.2.1 PROTOCOL DESCRIPTION
Also in the case of lazy replication, the primary copy and update anywhere protocols are similar and
depicted together in Figure 3.4.

• The read and write operations of transactions are first completely executed locally (lines 1-
5). For the primary copy approach, update transactions can only be submitted to the primary
replica.

• The commit is also executed locally and the locks released (lines 6-9). Only some time after the
commit, all write operations are collected into a message and sent to all other replicas.

• Remote replicas, upon receiving these write operations, acquire all necessary locks (lines 11-
12). In the primary copy approach, the writes are then executed (lines 13-15). Using update
anywhere, things are more complicated. Update transactions can now execute concurrently at
different replicas and update the same data items.Such conflicts need to be detected and resolved
(lines 17-20). We will discuss this soon. Finally, the remote transaction is committed and the
locks released (lines 21-22).

3.2.2 EXAMPLE EXECUTION
Figure 3.5 shows an example execution under the lazy primary copy protocol with two transactions.
RA is the primary replica and RB a secondary replica. Transaction T1 writes x and y. Transaction
T2 is a read-only transaction reading y. T1 is submitted to RA and T2 to RB . All operations are
executed locally. After T1 has executed all operations locally, it commits locally. Later RA sends the
set of all its write operations in FIFO order to RB . At RB , T2 has already a shared lock on y when
T1’s updates arrive. Thus, when T1 requests exclusive locks on x and y it is blocked on y. When T2

commits, T1 has all the locks, finishes execution, and commits.

3.2.3 LAZY VS. EAGER PROPERTIES
The advantages of lazy propagation. First, compared to eager approaches, lazy replication does not
have any communication between the replicas while a transaction is executed. Only after commit
are the write operations sent to the remote replicas. Thus, the response time for a transaction is
not delayed by communication or coordination between the replicas. We can therefore expect lazy
replication to have shorter response times than eager replication. The effect can be particularly big
if replicas are distributed in a wide area network and communication latencies are large.

26 3. BASIC PROTOCOLS

Upon: ri(x) for local transaction Ti

1: acquire shared lock on x

2: return x

Upon: wi(x) for local transaction Ti

{for primary copy: only allow at primary replica}
3: acquire exclusive lock on x

4: write new value of x

5: return ok
Upon: commit request for local transaction Ti

6: commit Ti

7: release locks of Ti

8: return committed
Upon: some time has passed after an update transaction Ti committed

9: send collection of wi of Ti in single message in FIFO order to remote replicas
Upon: receiving message from remote transaction Tj

10: execute the following in receiving order
11: for all wj(x) in message do
12: acquire exclusive lock on x

13: for all wj(x) in message do
14: if primary copy then
15: write new value of x

16: else
17: if Conflict detected then
18: resolve conflict
19: else
20: write new value of x

21: commit Tj

22: release locks of Tj

Figure 3.4: Lazy protocols

A second advantage is that a local transaction is not delayed by transactions running con-
currently on other replicas. In Figure 3.5, the local transaction T1 on primary RA is not delayed by
transaction T2 executing at RB . Only the remote transaction T1 on RB is affected, but this has no
effect on the response time perceived by the user, who receives the confirmation when T1 commits
at RA.

The disadvantages of lazy propagation. A first problem is that 1-copy-atomicity cannot be achieved
anymore if failures occur. If a replica executes and commits an update transaction and then fails,
the other replicas will never get to know its existence although the user has received the commit

3.2. LAZY PROTOCOLS 27

Figure 3.5: Lazy primary copy execution

confirmation. As already discussed in Section 2.5, this violates 1-copy-atomicity: the local replica has
committed the transaction while it must be considered aborted at the available replicas. For instance,
in Figure 3.5, if RA fails after committing locally but before propagating the write operations, T1

will never execute at RB , and thus, there is no commit at RB .
But even without failures lazy propagation provides inherently weaker consistency than eager

propagation. For instance, at the moment a transaction commits at its local replica, the other replicas
have stale data as their copies do not yet reflect the committed changes. Thus, read operations that
read at the remote replicas before the write operations are propagated and executed, read outdated
values. Lazy update anywhere is even worse than lazy primary copy. We discuss this in the next
subsection.

3.2.4 PRIMARY COPY VS. UPDATE ANYWHERE
Some of the arguments that were presented in Section 3.1.4, when we discussed primary copy vs.
update anywhere in eager approaches, also hold for lazy replication. Others get a new twist.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-010.jpg&w=168&h=269

28 3. BASIC PROTOCOLS

Figure 3.6: Conflicts with lazy update anywhere

The disadvantages of update anywhere. We have already briefly mentioned the main problem of
update anywhere and that is the level of consistency provided. Lazy primary copy can have stale
reads, but 1-copy-serializability can still be achieved if there is a single primary replica that does
not fail. Execution at the primary replica is serializable because it uses strict 2PL. The secondaries
execute update transactions in the order they committed at the primary. Therefore, there is one
global serialization order for update transactions. Read-only transactions are serialized locally at
each secondary using strict 2PL.

Using update anywhere, however, transactions can now concurrently update the same data
items on different replicas and commit without noticing the problem. Figure 3.6 shows an example
execution with two transactions and two replicas. Both T1 and T2 write x. T1 executes on RA and T2

on RB . Both transactions first execute locally. After commit, both send their write operation on x to
the other replica. If each replica blindly executed the write operation, RA’s copy of x would contain
the value written by T2, and RB ’s copy the value written by T1. The copies would have diverged. In
order to circumvent such an inconsistency and achieve eventual consistency (both copies have the
same value), replicas have to detect and resolve such conflicts.

Many systems detect conflicts by sending for each write operation the before- and the after-
image of the updated data item. When a replica receives such an operation, it compares the current
value of its own copy with the before-image. If they are different, a conflict exists. In the example of

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-011.jpg&w=169&h=231

3.2. LAZY PROTOCOLS 29

Figure 3.6, assume that x has initially a value of 0, T ′
1s write sets it to 1 and T2’s write to 2. In this

case, RB detects a conflict when it receives T1’s write operation, as its own value for x is 2, while the
before-image in T1’s message is 0.

Once a conflict is detected, it has to be resolved. The goal is that the different replicas agree
on the same final value for their data copies. One among many possibilities is to use timestamps.
Each replica timestamps its copy of a data item x with the local time when a write operation on
x occurs, and these timestamps are piggybacked when the update is propagated. In the example of
Figure 3.6, assume that T1’s write operations receives a smaller timestamp than T2’s write operation.
In this case, when RA receives T2’s write it first detects the conflict and then decides to apply the
write operation as the timestamp is higher (20) than the local timestamp of x (15). In contrast, at
RB , T1’s write operation on x is not executed, as the timestamp is smaller than the local timestamp.
At the end, both copies of x have the value written by T2.

Conflict detection and resolution are complex,but they are not the only problem.Transactional
properties are no longer guaranteed. In the example of Figure 3.6, T1’s client receives a commit
confirmation,but its update was not committed at RB due to the conflict resolution.1-copy-atomicity
is violated. Even partial results could remain. Conflict resolution is typically done on a per-object
basis. Assume an extended example where T1 and T2 do not only update x but also y. Then, it could
be possible that both replicas apply T1’s update on x and T2’s update on y. No non-replicated system
that provides serializability could produce such a result.

The disadvantages of primary copy. As with the eager protocols, lazy primary copy is less flexible
than lazy update anywhere; it has a potential bottleneck, and fault-tolerance is more difficult to
implement. What is worse, performance can now become a real deal-breaker. We just mentioned
above that lazy replication does not require communication between replicas during transaction
execution. This should translate in shorter transaction response times than with eager replication.
But this is not necessarily the case in a primary copy approach when replicas are distributed in
geographically distributed locations. Recall from Section 1.1, Figure 1.2, that this form of replication
is mainly done to reduce the client-perceived response time. Clients connect to the closest replica
avoiding long network delays between client and replica. However, in the primary copy approach,
if a client wants to submit an update transaction, it has to connect to the primary replica, and that
might actually not be close to the client. Thus, every operation the client submits traverses the
long-distance link between client and primary. If a transaction has many read and write operations,
it can easily lead to unacceptable response times. Lazy update anywhere does not have this problem,
as each client can submit both read-only and update transactions to the closest replica.

3.2.5 SUMMARY
In this chapter, we presented four basic replica control protocols differing in where update transac-
tions are executed and when write operations are propagated to other replicas. Each of the protocols
has its advantages and disadvantages and none is a clear favorite. Instead, which protocol type to use
will depend on many external factors, such as the replica configuration and the workload type.

30 3. BASIC PROTOCOLS

Since this basic classification [Gray et al., 1996], a lot of work has been done in the area of
replica control, and new protocols have been proposed in each of the basic categories eager primary
copy, eager update anywhere, lazy primary copy and lazy update anywhere. Furthermore, some of the
newer protocols can be considered hybrids that reside somewhere between the basic categories.
Each of the new protocols aims in keeping the advantages of a certain category but eliminating,
or at least alleviating its disadvantages. Some of the following chapters dig deeper into these new
developments.

31

C H A P T E R 4

Replication Architecture
This chapter is concerned with the architecture of replicated database systems. The protocols de-
scribed in the last chapter were kept at a rather high-level without giving any details of how they
could actually be implemented in a real system. This chapter introduces the basic design alternatives
that exist for putting a replication solution into practice.The task of architecting a system consists of
deciding what functionality is provided, how this functionality is packaged into subsystems, and how
these subsystems interface. Understanding the trade-offs between various engineering alternatives
is important as they have an influence on non-functional attributes such as availability, scalability,
maintainability, etc.

The most crucial design decision one has to make is to decide where to locate the replication
logic. The replication module could be an integral part of the database engine or it could be located
in a middleware component that resides between the clients and the unchanged database kernel.
For middleware based systems there exists again various architectural alternatives, such as whether
there is a centralized middleware component, or the middleware itself is decentralized.The choice of
architecture has a fundamental impact on how replica control is correlated with concurrency control,
how clients connect to the system, how the replication module interacts with the database, and how
update processing is performed. All these issues are dealt with in the first section of this chapter.

A second concern is how update transactions are actually processed at remote replicas. So
far, we simply indicated that write operations are executed at all replicas. But once we consider that
write operations are typical SQL statements, there are several practical issues to resolve. The second
section is dedicated to update processing.

This chapter also discusses other important architectural issues such as replica transparency
and replica discovery. The third section is devoted to this topic.

Finally, we discuss group communication systems as their use has become widespread in
architecting database replication.The reason is that group communication systems help dealing with
replica failure and recovery, as well as providing multicast primitives with ordering and reliability
(atomicity) properties – which has proven to be helpful for enforcing 1-copy isolation, atomicity
and durability. The fourth section provides an introduction to group communication systems and
outlines how their functionality can be leveraged to architect database replication protocols.

32 4. REPLICATION ARCHITECTURE

Figure 4.1: Alternative architecture

4.1 WHERE TO LOCATE THE REPLICATION LOGIC

4.1.1 KERNEL BASED ARCHITECTURE
The most natural location for the replication logic is the database kernel. Within the database kernel
one has access to whatever functionality might be needed to replicate data and to integrate the
replication logic with transactional processing. For example, it is quite easy to tightly couple replica
control with the concurrency control mechanism. We refer to this approach as kernel based or white-
box database replication since the database is like a white box with all its functionality visible to the
replication module. This architecture is depicted in Figure 4.1.a. The database replicas coordinate
with each other for replica control purposes.The clients typically connect only to one of the database
replicas and only interact with this replica.

4.1.2 MIDDLEWARE BASED ARCHITECTURE
An alternative to kernel based replication is to encapsulate the replication logic into a separate
component known as database replication middleware. The middleware is interposed between the
database clients and the database replicas. Each database instance is a regular database without
awareness of replication. From the database perspective, the middleware is simply a regular client.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-012.jpg&w=396&h=248

4.1. WHERE TO LOCATE THE REPLICATION LOGIC 33

The real clients send all their read, write, commit and abort requests to the middleware instead of the
database. And the middleware is the one that takes care of coordinating transaction execution at the
different database replicas, propagating updates, and ensuring that 1-copy equivalence is provided.

Centralized middleware. A replication middleware in its simplest form can adopt a centralized
middleware approach (see Figure 4.1.b). In this approach, there is a single instance of the middleware
between clients and database replicas. It receives all client requests, schedules them, and forwards
them to the relevant database replicas. It receives the replies from the database replicas and returns
them to the corresponding clients.

Replicated centralized middleware. The centralized middleware approach is simple, but unfortu-
nately, it becomes a single point of failure.Thus, it fails to provide one of the main features replication
is used for, namely availability. This problem can be avoided by replicating the middleware itself,
purely for fault-tolerance purposes. Figure 4.1.c shows this architecture. One middleware is the
master replica and all clients connect to this master, while the other is a backup middleware that
only takes over if the master fails. We call this a replicated centralized middleware. As the middleware
maintains some state (e.g., currently active transactions, some write information etc.), the backup
middleware replica must receive state changes from the master middleware at appropriate synchro-
nization points.There exist many different process replication techniques that are suitable to replicate
the middleware such as active replication [Schneider, 1990]. However, in principle, the failover is
similar to the failover of a database replica and we discuss this in more detail in Section 9.1.

Decentralized middleware. A third alternative lies in having a middleware instance collocated with
each database replica resulting in a decentralized middleware approach as depicted in Figure 4.1.d.
The middleware replica and the database replica together build one replication unit.The middleware
replicas communicate with each other for coordination purposes. Clients typically connect to one
of the middleware replicas.

This architecture has two advantages over a replicated centralized middleware. First, there is
typically only one failover mechanism for the unit consisting of middleware and database replica. In
contrast, a replicated centralized middleware needs to implement different failover mechanisms for
the middleware and the database replicas.

Second, a decentralized middleware is more attractive in a wide area setting. If there is only
one (master) middleware, all clients have to connect to the same middleware which might be far from
the client, even if one database replica is close. Thus, all interaction between client and middleware
crosses the wide area link. Similarly, the single middleware might be close to some but not all
of the database replicas, leading to long-delay communication between middleware and database
replicas. In contrast, with a decentralized middleware, a client can connect to the closest middleware
replica. Both the communication between client and middleware replica, and middleware replica
and database replica is thus local and fast. Only the communication between middleware replicas is
across the wide area network.

34 4. REPLICATION ARCHITECTURE

4.1.3 KERNEL VS. MIDDLEWARE BASED REPLICATION
Advantages of kernel based replication. The major advantage of kernel based replication is that
the replication module has full access to all the internals of the database system. Most importantly,
it can be tightly coupled with the concurrency control mechanism. As shown in the algorithms of
the previous chapter, concurrency control and replica control appear highly tangled, especially in
eager approaches. In a kernel based approach that is quite easy to achieve. In contrast, a middleware
approach does not have access to the concurrency control mechanism of the database system. Thus,
many systems partially re-implement concurrency control at the middleware layer and might not
be able to offer the degree of parallelism that is possible in kernel based systems. In particular,
concurrency control in the database system is usually on a record basis, i.e., in locking based schemes,
each record is individually locked just before it is accessed for the first time. In contrast, at the
middleware we might not even know which records are accessed. Clients submit their requests
typically in form of SQL statements and each individual statement can access many records. Thus,
if the middleware does its own locking, it is typically on a coarse granularity such as tables. We also
see shortly that executing write operations at remote replicas can be better optimized in a kernel
based approach.

A second advantage of kernel based replication is that clients remain directly connected with
the database system. In contrast, middleware systems introduce a level of indirection, leading to
more messages in the system. However, middleware and database replica typically remain in the
same local area network where this additional message overhead has relatively little impact.

Disadvantages of kernel based replication. The blessing of kernel based replication,namely the large
optimization potential, is also its curse. If replica control is too tightly interwoven with concurrency
control or the processing of records, any change in their implementation will likely directly affect the
replication module.Maintenance of the code becomes a problem.In contrast,middleware approaches
are forced to separate the concerns as the replication module can only interact with the database
through a well-defined interface. Thus, implementation changes within the database are unlikely to
affect the middleware system.

An important hurdle for kernel based replication, many times unsolvable, is the requirement
to access the source code of the database. In case of commercial database systems, only the vendor
itself can implement the replication solution as no one else has access to the source code. For open
source databases, such as PostgreSQL [PostgreSQL, 2007], there exist, in fact, several replication
solutions. However, the internals of the database system are usually extremely complex, and modify-
ing and extending the code needs considerable experience with the underlying system. In contrast,
middleware systems are developed independently, possibly from third parties, and can decide on
their own internal structure.

Finally, a kernel based solution is confined to a single database system. In contrast, a mid-
dleware system can possibly use different database systems, and thus, can implement a replication
solution across a heterogeneous environment.

4.2. PROCESSING OF WRITE OPERATIONS 35

4.1.4 BLACK VS. GREY BOX MIDDLEWARE
One of the major disadvantages of a middleware approach is that it has a very restricted interface
to the database replicas and it is difficult to take advantage of the functionality provided by the
database. Systems that use only off-the-shelf database interfaces without any replication support
from the database represent a black-box replication solution, as they see the database as a black box.
However, in some cases, implementing some extra functionality within the kernel, and exposing or
exporting this functionality through appropriate interfaces to the outside, can come a long way to
help the middleware perform its replication tasks. We will see later several examples where such
functionality is useful. In this case, we refer to a gray-box approach as the database replica is not
completely replication oblivious.

4.2 PROCESSING OF WRITE OPERATIONS

Write operations have to be executed at all replicas, and processing updates is the main overhead of
replication.Therefore, it should be done as efficient as possible. So far, we have simply indicated that
the write operations of update transactions are executed at both the local and the remote replicas. In
relational database systems, a write operation is typically an SQL update, insert or delete statement.
Executing a write operation means parsing the statement, determining the number of tuples affected
and then perform the modification/deletion/insertion. If all replicas indeed perform all of these tasks,
then we call this symmetric update processing. However, this can quickly waste valuable resources.
Second, it requires that execution of these operations is completely deterministic. An example of a
non-deterministic operation is an update that sets an attribute to the current time. As operations do
not execute at exactly the same time at different replicas, symmetric update processing would allow
data copies to diverge.

An alternative to symmetric update processing is what we call asymmetric update processing.
When the transaction submits a write operation on data item x to a replica RA, RA does not
immediately forward the write operation to the others even if the approach is eager. Instead, it
first executes the operation locally, and then bundles the changes into a single message. That is,
the identifier (e.g., the primary key) and the after-image of each updated record are collected. This
information is sent to the other replicas, which can quickly find the affected records through their
identifiers, and apply the updates directly. Applying these changes is much faster than executing the
original SQL statement. In the following, we refer to the extracted changes as writeset, in order to
indicate that this is different from the original write operations.

Note that the concept of symmetric vs. asymmetric update processing is orthogonal to whether
the replica control protocol is eager or lazy, primary copy or update anywhere, as most replica control
protocols can use both of the update processing mechanisms.

The question is how the writeset information can be extracted. Many different approaches
have been proposed.

36 4. REPLICATION ARCHITECTURE

Triggers. As a first option, the writeset can be obtained using triggers, a functionality widely
available in most database systems. Whenever an insert/update/delete occurs, a trigger is fired that
captures the particular changes. The trigger could write the necessary information into an extra
table where it can be later retrieved. Triggers are heavily used both in kernel and middleware based
approaches. Many systems have internal trigger mechanisms for various purposes that can be reused
for writeset collection in kernel based replication. Most database systems also provide triggers at
their interface, making them accessible to a middleware system.

Log mining. Another possibility is to use the log mining facility available in some database systems.
Databases usually write for each update performed the after-images of the affected records into a
log. This is done for recovery purposes. Thus, writeset information can be easily extracted from the
log. This appears particularly appealing for kernel based replication as they have direct access to the
log. Some systems also export log access via interfaces. However, in this case, this is mostly, if not all,
only after the transaction has committed. Therefore, middleware based approaches can only exploit
this mechanism in case they use lazy replication where writesets are sent after commit.

Writeset extraction service. Instead of awkwardly extracting writeset information through triggers
or the log, the most efficient approach is to create them as the records are accessed. Just as logging
creates before- and after-images while the updates take place, so could the writeset be built on the
fly, being optimized for transfer over the network and application at the remote replicas. Clearly,
such writeset creation can only be done in the database kernel. However, it would not be difficult
to expose the functionality to the outside. And here comes the gray-box approach into play. Let us
have a closer look at the options.

• SQL writeset. The writeset could be created as a list of simple SQL update, insert and delete
statements where each statement writes exactly one record. Thus, instead of having complex
SQL WHERE clauses, the reference is always only to the primary key. If the database allows
the middleware to retrieve such a writeset, then applying the writeset at remote replicas simply
means sending the individual SQL statements. Application should be faster than the original
write operation as access to the records can always be through the primary key index.

• Opaque binary writeset. Another possibility is to obtain the writeset in binary form.This is more
efficient, since it does not require transforming the internal record format into SQL. It requires,
however, a complementary service to apply the binary writeset at remote replicas. This has also
the additional advantage that applying the writeset avoids the overhead of SQL processing.
The disadvantage is that the middleware cannot read the writeset. As we outlined before,
middleware systems often re-implement part of the concurrency control. For that purpose, it
might be helpful for the middleware to know exactly the records that were actually changed by
an operation. Also, sometimes the middleware might want to do some additional processing,
in which case it would also need the details of the changes.

4.3. PARTIAL REPLICATION 37

• Transparent binary writeset. To avoid the disadvantages of the opaque binary writeset, the
database could also provide an interface to access the content of the writeset. Thus, record
identifiers could be extracted, which can be used, e.g., for conflict detection.

4.3 PARTIAL REPLICATION
The previous section discussed the possible performance gain of asymmetric update processing
by avoiding to execute the full write operations everywhere. Nevertheless, although applying the
changes might be faster, they still have to be applied at all copies. One way to further reduce the
write overhead is to reduce the number of copies per data item. Using partial replication, each data
item has only copies on some but not all of the nodes1. If a node does not host a copy of a data item
then it does not need to apply the changes, leaving more capacity for doing other work. Therefore,
the idea is to create just enough copies of a data item so that the read load on this data item can be
nicely distributed among all copies.

However, partial replication has its own difficulties. In pure partial replication each node has
only copies of a subset of the data items but no node contains a full copy of the database. In this
case, it is possible that a transaction accesses a set of data items such that no node has copies of all of
them. Thus, distributed transaction processing needs to be supported. This is complex as it requires
exact knowledge of where data items reside. Also, the typical client interface for relational databases
are SQL based, and SQL select statements can translate to read operations on many data items. All
of these data items must reside on one node to perform the operation, but often it is not possible in
advance to determine which set is actually going to be accessed. This reduces the flexibility of how
the database can be distributed. For instance, it might require that all records of a table be collocated
on a node.

Furthermore, update propagation is a further challenge. For instance, assume node NA has
copies of data items x and y, and node NB has copies of y and z. Assume a transactions starts at
NA and reads x and then writes y. Later it submits a read (e.g., SQL select) operation that accesses
y and z. This read operation can only be served by NB , but this node might not yet have the current
version of y, e.g., because the writeset is only propagated at the end of transaction. Thus, replica
control becomes more complex.

There are two ways to avoid distributed queries. One is hybrid partial replication. In this
approach, a set of nodes are full replicas that have a copy of the entire database, and another set
of nodes are partial replicas containing only a fraction of the database. Hybrid partial replication
analyzes each SQL statement and decides where to execute it. If there is a partial replica that
contains all data items that might be accessed, then the statement can be executed at this partial
replica.Otherwise, the statement must be executed at a full replica.The main issue with this approach
is that full replicas have to apply all write operations. As the number of transactions increases, the
full replicas will eventually saturate, building the bottleneck in the system. Figure 4.2 depicts pure
and hybrid partial replication.
1In case of partial replication, we prefer to use the term “node" instead of “replica".

38 4. REPLICATION ARCHITECTURE

Figure 4.2: Full, hybrid, and pure partial replication

The other technique to avoid distributed transactions is to exploit a priori knowledge of
transactions. If the set of transaction types and the data items each transaction might access are
known in advance, then the database can be distributed such that for each transaction there is at
least one partial replica that has all data items that will be accessed by the transaction. Therefore,
each transaction can execute fully on one node.

In any case, deciding on where to put which data items in order to optimally exploit the
resources of all nodes and to not create any bottlenecks in the system, is a challenging task and
requires a good understanding of the application requirements. Furthermore, replica control can
become more complicated in some cases. The replica control protocols we present in the following
chapters all assume full replication although some might be easily extensible to partial replication.

4.4 OTHER ISSUES

Replication transparency. A very desirable feature of any replication solution is replication trans-
parency. It allows database applications to be kept unmodified.This is very important, since otherwise
every database application would need to be modified to adjust for replication. That would make
any replication solution hard to apply and maintain. From an architectural point of view replica-
tion transparency means that the replicated system has to provide exactly the same interface to the
database application as a non-replicated database system. Databases are today accessed by means of
database connectivity components such as JDBC and ODBC. These components are split into two
modules, a client-side component and a server-side component. Clients connect to the client-side
component that provides a standardized interface. Thus, whether middleware or kernel based repli-
cation is used, the application should be able to load a corresponding client-side component that
offers the standard interface.The client-side component can now implement some of the replication

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-013.jpg&w=254&h=153

4.4. OTHER ISSUES 39

functionality, hiding it from the application. In particular, two main functionalities that are usually
implemented in the client-side connectivity component are replica discovery and failover.

Replica discovery. In most of the architectures that we have discussed in Section 4.1, there is no
longer a unique access point for clients. The only exception is the centralized middleware where
there is a single middleware where all clients connect to. Otherwise, the middleware is replicated
or decentralized, or the database replicas are directly accessed. Each of them has its own unique
address, such as an IP address. Furthermore, this set is also dynamic, as replicas might fail and new
replicas are added. This is in contrast to a non-replicated system where a client application connects
to a well-specified single address. Therefore, the replicated system has to provide a mechanism to
detect replicas. Let us have a look at two mechanisms to detect replicas.

• IP-multicast-based replica discovery. One possibility for replica discovery is to resort to IP-
multicast. All replicas subscribe to a specific IP multicast address that is specifically used
to detect replicas. When a client wants to connect to the replicated database the connectivity
component at the client IP-multicasts a replica discovery message.Replicas receive the message
and reply to it, typically with their real IP address, and possibly other information such as load
and configuration information.The connectivity component can then select a replica to connect
to according to the replies it received. In particular, in a primary approach it has to connect to
the primary if it wants to submit update transactions. IP-multicast-based replica discovery is
only possible if IP multicast is supported. Thus, it is typically restricted to cluster replication
within a local area network.

• Directory-based replica discovery. An alternative is to rely on a directory service. In this case,
a directory node with a well-known IP address keeps a directory of all available replicas and
their IP addresses. The node monitors the current set of available replicas and updates the
directory content regularly. Thus, the client connectivity component can request the directory
information from the directory node and then connect to one of the available replicas. Of
course, the directory node now becomes a single point of failure and might require replication
by itself for fault-tolerance purposes.

Failover. Failover functionality is somewhat related to replica discovery. When a replica fails, the
clients that are connected to this replica have to reconnect to another replica. This is part of the
failover procedure. Typically, when a node fails, the client loses the connection and receives a failure
exception upon its next request. The client connectivity component has to transparently catch this
failure, find a new replica and reconnect. To find a new replica, one of the discovery mechanisms
above can be used. The client component could also have stored the available replicas when it made
its first connection. Alternatively, information about available replicas can be forwarded regularly to
clients by piggybacking it on standard messages transmitted to the client.

40 4. REPLICATION ARCHITECTURE

4.5 GROUP COMMUNICATION AS BUILDING BLOCK
A replicated database has to deal with many issues related to distribution: failure detection, coor-
dination among replicas, reliable and ordered message exchange, etc. Providing such functionality
is hard, especially in the advent of failures. But this challenge is not unique to replication, and a
large body of research has proposed general-purpose solutions for these issues. In particular, group
communication is a paradigm that provides most of these functionalities. This means that group
communication is an excellent building block to simplify the architecture and protocols of a repli-
cated database. In fact, over the last decade many replication solutions have been proposed that rely
on the functionality of group communication systems to simplify the tasks at the replication layer. In
the next sections, we give an overview of the key functionalities provided by group communication.
Then, we shortly outline how replication can exploit these properties. More details will be given in
the following chapters when we describe individual replication solutions in more detail.

4.5.1 GROUP COMMUNICATION AND RELIABLE MULTICAST
A group communication system is a communication middleware that provides an advanced inter-
face to the application. It is typically implemented as a layer between the standard point-to-point
communication (e.g., UDP/IP) and the application. Application processes are distributed over a
set of nodes and communicate and interact via the group communication interface provided by the
group communication layer. The group communication paradigm provides the notion of process
group. The application processes build a process group that cooperates together for a given task, for
instance, to replicate a database. The group communication layer provides two main functionalities:
group membership and multicast. Furthermore, the two features are interrelated through the notion
of virtual synchrony.

Membership. Group membership provides the notion of views, where a view is the current list
of connected and alive processes in the group. Application processes can join/leave the group by
submitting a join/leave request. Furthermore, the group communication layer detects process failures
and automatically removes the failed processes from the group. Every time that there is a change in
the membership due to a join/leave or a failure, each available application process receives a view
change message informing it about the membership of the new view.

Multicast. Reliable multicast allows sending a message to all available group members. When
multicasting a message one can specify reliability and ordering properties. This requires additional
coordination within the group communication layer. Thus, when the group communication layer
receives a message from the underlying network, it first ensures that the reliability and ordering
properties are guaranteed. Only then the group communication layer delivers the message to the
application layer.

Reliability. In point-to-point communication, reliability means that a message will be eventually
received by the receiver as long as both sender and receiver remain available. When a message is

4.5. GROUP COMMUNICATION AS BUILDING BLOCK 41

Figure 4.3: Reliable and uniform multicast examples

multicast to a group, we have many receivers.Thus, the concept of reliability becomes more complex.
We can distinguish two levels of reliability, and their differences are subtle but important.They relate
to faulty processes. For that, we have to first define what that means. We say that a process is correct if
it is available, up and running, at least for the time period under observation. Otherwise, the process
is faulty. Faulty means it crashes sometime during the execution of the message exchange. We only
consider simple failures where a process simply stops working.

With this definition, reliable multicast guarantees that once a message is delivered to one
correct process, it will be delivered to all correct processes. As a result, the same set of messages is
delivered to all correct processes.

Let us have a short look at an example as depicted in Figure 4.3.a.There are three processes p, q

and r building a group. While not depicted in the figure, each process has a group communication
and an application layer. Assume the application layer of process p multicasts a message m to the
group. Internally, the communication layer of p IP-multicasts m to the group or sends the message
individually to the other processes using UDP. Since IP-multicast and UDP are unreliable, it might
be possible that the group communication layer at p and q receive the message and deliver it to their
application layers, but the message does not arrive at r . Now assume that p fails. We do not care
whether the communication layer at p has delivered the message to its application, because reliable
multicast does not care about faulty processes. However, since q is correct and the message was
delivered, the message must also be delivered at r since r is also correct. Therefore, reliable multicast
requires a resubmission mechanism so that the group communication layer at q can forward the
message to r . This means that the group communication layers at correct processes have to keep
track of the delivered messages and might need to forward them to other correct processes if failures
occur.

An important aspect of reliable multicast is that it does not restrict what happens at faulty
processes. Obviously, a message that is delivered by correct processes might not be delivered at a
faulty process. But it might also be possible that a message is delivered at a faulty process while it is
not delivered at the correct processes. Figure 4.3.b shows an example where p sends the message to

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-014.jpg&w=254&h=106

42 4. REPLICATION ARCHITECTURE

Figure 4.4: Virtual synchrony

q where it is delivered and then both p and q fail while the message never arrives at r and therefore,
is not delivered at this correct process. This is allowed with reliable multicast.

Uniform reliable multicast. Some applications also want to have control over what happens at
faulty processes, and we will see later that this is true for database replication. Uniform reliable
multicast provides stronger guarantees than reliable multicast. It guarantees that whenever a message
is delivered at any process (independently of whether the process is correct or it is faulty and crashes
shortly after delivery), then it is delivered at all correct processes. In this case, the execution of
Figure 4.3.b is impossible, as a delivery at p or q implies a delivery at correct process r . It basically
means that when the group communication layer of q receives the message from the network it does
not immediately deliver it to the application. Instead, it waits until it knows that the communication
layer of r has received it as well. Only then, it delivers the message. If it fails before receiving this
confirmation from r , it is guaranteed that the message was not delivered to the application. That is,
the fundamental property of uniform reliable multicast is that the faulty processes deliver a subset
of the messages delivered at correct processes. Figures 4.3.a and b show cases that are prevented by
uniformity. Figure 4.3.c shows the only case that would be allowed under uniformity in addition to
no process delivering the message m.

Message ordering. Group communication systems typically provide three levels of message order-
ing: FIFO, causal and total. With FIFO, ordering messages from the same sender are delivered in
sending order to each group member. Causal ordering is the transitive extension of FIFO via casual
dependencies.Total ordering guarantees that all messages are delivered in the same order to all group
members independently of who sent them.

Virtual synchrony. Virtual synchrony relates message delivery with view change events. Informally,
it guarantees that each application perceives view changes at the same virtual time in regard to
message delivery. More formally, virtual synchrony guarantees that two processes that transit from a

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-015.jpg&w=169&h=124

4.5. GROUP COMMUNICATION AS BUILDING BLOCK 43

view V to a consecutive view V ′ get the same set of messages delivered while being members of V .
In the examples depicted in Figure 4.4, the current view V consists of p, q and r , and then r fails.
Then, a view change message is delivered at p and q informing them that the new view V ′ consists
of only p and q. In Figure 4.4.a a message m is delivered at p just before the view change V ′. Under
virtual synchrony, it is guaranteed that m is also delivered at q before the delivery of V ′. Assume now
that r rejoins. A new view change V ′′ is delivered at all three processes containing again the three
processes. Under virtual synchrony, if a message m′ is delivered at p after the delivery of V ′′ then
m′ is also delivered at q and r after delivery of V ′′ (unless they fail, of course). However, without
virtual synchrony the scenario in Figure 4.4.b might happen. Message m is delivered at p but not
at q before the delivery of V ′. This violates virtual synchrony. The same happens with m′ that is
delivered at p before V ′′ and at q after V ′′.

4.5.2 SIMPLIFYING REPLICATION WITH GROUP COMMUNICATION
There exist many eager replication solutions that take advantage of some of the group communication
primitives. We briefly outline how these primitives can be exploited to support replication semantics.

Exploiting group membership. One of the functionalities required by replication protocols is mem-
bership.That is, a replication protocol should keep track of which replicas are available and connected.
This functionality can be delegated to the group communication system by letting each replica be
member of a replication group. In this way a failure of the node holding a replica is automatically
detected by the group communication system.The replica could be a database replica in kernel based
replication or a middleware replica if a replicated centralized or a decentralized middleware archi-
tecture is used. Basically, the group communication system detects the failure and produces a view
change that is delivered to each available member of the group. This triggers the failover procedure
at the replication layer. Group membership is not only useful for detecting failures. It is also useful
to keep track of new replicas joining the system, either after a recovery of a failure or when new
replicas join the system.

Exploiting ordered multicast. Using an ordered multicast can simplify the task of replica control,
and thus,helps to achieve 1-copy-serializablity or other 1-copy-isolation levels.Let us take as a simple
example the eager update anywhere protocol of Figure 3.1 from Section 3.1. In Section 3.1.4, we
outlined how this protocol can produce distributed deadlocks. The problem is that write operations
can be submitted concurrently to different replicas, these replicas acquire the locks locally and then
send the requests to the other replicas where they have to wait for each other. Such distributed
deadlocks are difficult to detect. However, if a replica multicasts a write operation in total order,
then the write operations are delivered to all replicas in the same total order. Now each replica only
has to request locks in the order in which the write operations are delivered. As a result, all replicas
acquire locks in the same global order, and distributed deadlocks can be avoided allowing only local
deadlocks that are easier and cheaper to detect and resolve. We will see in later sections various
protocols that exploit this total order to determine the global serialization order. In fact, the use of

44 4. REPLICATION ARCHITECTURE

total order multicast often allows each replica to decide locally the serialization order of transactions,
and whether a transaction can commit or has to abort because of conflicts.

Exploiting uniform reliable multicast. Uniform reliable multicast can be used to guarantee 1-copy-
atomicity despite failures. In Section 3.1 we have argued that eager protocols have to be enhanced
with an agreement protocol, such as 2-phase-commit, to guarantee that all replicas decide on the
same outcome of a transaction in failure cases. Instead, in the protocol of Figure 3.1, it is actually
enough that the local replica multicasts the commit message to all replicas using uniform reliable
multicast. If the message is delivered at any replica and the transaction committed, it is guaranteed
that the message is delivered at all correct replicas, and thus, the transaction committed. In particular,
once a message is delivered to the replica that sent it, and this local replica commits the transaction
and informs the client about the commit, all correct replicas will commit, too. Therefore, even if
the local replica fails shortly after the commit, it is guaranteed that the available system has the
transaction committed.

Uniformity also simplifies recovery due to the guarantee that a failed replica has only commit-
ted a subset of the transactions that were committed by available replicas. Thus, recovery only has to
send the missing transactions to the recovering replica, but there is no need to reconcile transactions
that only committed at the failed replica.

One has to note, however, that implementing uniform reliable multicast requires by itself some
agreement protocol. The group communication layer of a replica cannot simply deliver a message
once it receives it but has to delay the delivery until it knows that the message has arrived at all other
replicas. However, uniform reliable multicast is typically much faster than 2-phase commit because
it is implemented in the communication layer, and more importantly, it does not use any logging to
persistent storage (i.e., disk).

Exploiting virtual synchrony. Virtual synchrony can come in handy at the time when a new node or
a previously failed replica joins the system, and thus, can help with the task of 1-copy-durability.The
joining replica needs the current state of the database.Typically, one of the available replicas transfers
it.However, such a transfer can take a long time,and transaction processing typically continues during
this transfer. The joining node may not miss the updates of any of these transactions, i.e., it either
receives the updates of these transactions as part of the database transfer, or it has to execute these
transactions by itself after the transfer is complete. Virtual synchrony can help to determine the
point at which the joining replica switches to processing transactions by itself. For instance, the new
replica could join the group shortly before the transfer is complete. A view change is delivered to all
replicas indicating that the new replica has become member of the group.The replicas also know that
all messages that are delivered after the view change are also delivered to the new replica. Therefore,
the replica performing the transfer could transfer all changes related to messages delivered before
the view change but let the new replica process all the messages that are delivered after the view
change.

4.6. RELATED WORK 45

4.6 RELATED WORK

Basically,all of the early work on database replication and also the first approaches that appeared in the
late 90s assume kernel based replication. Concurrency control at each replica is tightly coupled with
replica control, providing one coherent replication solution. The replication solution is also tightly
coupled with the other components of a database system. Most of these solutions are evaluated based
on simulation, and thus, are not concerned with how these ideas can be truly implemented, either
within a concrete database kernel or whether it would be actually possible to implement them in a
middleware layer. Also, how write operations are actually executed at remote replicas is not clearly
described in most of this early work.

A first concrete prototype implementation [Kemme and Alonso, 2000b] integrates an eager
protocol based on group communication into the PostgreSQL engine. It directly extends the existing
locking-based concurrency control mechanism and uses asymmetric update processing, taking ad-
vantage of the internal structure of records.A follow-up work [Wu and Kemme,2005] moves the im-
plementation to a newer version of PostgreSQL that is based on snapshot isolation. Manassiev et al.
[2006] present a replication solution within the MySQL server. Little other research work on real
kernel based implementations exists due to the complexity of database kernels and lack of publicly
available database engines. In contrast, commercial systems all provide various forms of replication,
typically embedded within the database kernel.

The seminal approach to middleware based database replication was Middle-R
Jiménez-Peris et al. [2002b]; Patiño-Martínez et al. [2005]. Many middleware based approaches
have followed [Amir and Tutu, 2002; Amza et al., 2003a,b; Cecchet et al., 2004; Elnikety et al.,
2006; Lin et al., 2005; Röhm et al., 2002]. While most of the approaches use a black-box approach,
Middle-R [Jiménez-Peris et al., 2002b; Patiño-Martínez et al., 2005] follows the gray-box approach
as PosgreSQL is extended with two services to extract and apply opaque binary writesets. Another
gray-box approach is Tashkent [Elnikety et al., 2006], which proposes to expose an interface to
tag transactions with ordering that should be enforced by the database. In this way, writesets can
be committed in parallel without the risk of the underlying database changing the ordering estab-
lished by the middleware. Furthermore, Correia et al. [2007] and Salas et al. [2006] present reflective
database architectures suitable to build gray-box replication. Reflection exposes database behavior to
the middleware and, at the same time, permits the middleware to intercept the transaction process-
ing within the database and add/change the behavior of the database. The C-JDBC [Cecchet et al.,
2004] implementation has evolved into a commercial product.

Many black-box approaches use symmetric update processing, due to the difficulty of extract-
ing the writeset. Exceptions are Ganymed [Plattner and Alonso, 2004; Plattner et al., 2006a] and
DBFarm [Plattner et al., 2006b] that use triggers to extract writesets.The cost of writeset extraction
and application has been analyzed in Salas et al. [2006].

Most middleware approaches are centralized. Basically, all decentralized approaches, whether
kernel or middleware based, use group communication for communication among the repli-
cas [Amir and Tutu, 2002; Kemme and Alonso, 2000b; Lin et al., 2005; Serrano et al., 2008;

46 4. REPLICATION ARCHITECTURE

Wu and Kemme, 2005]. Tashkent [Elnikety et al., 2006] uses a hybrid architecture in which lo-
cal middleware instances are collocated with each database replica, and clients interact directly with
these replicas. However, there is a centralized certifier with which all middleware replicas communi-
cate for concurrency control purposes. This certifier is replicated for availability purposes. Another
possibility for a hybrid approach would be to let clients connect to a centralized middleware that
communicates with middleware instances collocated with each database replica.

Cecchet et al. [2008] discuss existing research attempts to middleware based replication and
analyze what is needed to make them work in a real industrial setting. The main criteria are perfor-
mance, availability and administration.

Most partial replication protocols offer 1-copy-serializability [Fritzke Jr and Ingels,
2001; Holliday et al., 2002; Pacitti et al., 2005; Schiper et al., 2006; Sousa et al., 2001].
Fritzke Jr and Ingels [2001] use one total order multicast for every read operation and one for
the writesets. Schiper et al. [2006] introduce partial replication algorithms based on group com-
munication. In Holliday et al. [2002], one protocol requires all data to be accessed by a transaction
to reside on one node, the other creates temporary copies for data items that are not locally repli-
cated. Pacitti et al. [2005] describe a lazy replication protocol that allows both update anywhere and
primary copy. For each table, a different mechanism can be used. It is a middleware based pro-
tocol that enforces the same total order of transactions at all replicas. There exists some work on
partial replication and 1-copy-SI protocol [Serrano et al., 2007], its application to wide area net-
works [Serrano et al., 2008] and probabilistic analysis of abort rates Bernabé-Gisbert et al. [2008].
A performance analysis of partial replication was done by Nicola and Jarke [2000], and the question
of where to locate replicas was discussed by Wolfson et al. [1997].

One of the first group communication systems to be developed was the ISIS sys-
tem [Birman et al., 1991]. Further well-known systems are Totem [Moser et al., 1996],
Horus [van Renesse et al., 1996], Ensemble [Hayden, 1998], Spread [Spread, 2007], Ap-
pia [Miranda et al., 2001], and JGroups [JGroups], with the last being frequently deployed in many
open-source projects. A survey on group communication properties is provided by Chockler et al.
[2001].

47

C H A P T E R 5

The Scalability of Replication
One of the main objectives of replication is performance: providing scalability, increasing the
throughput that is achievable by the system and/or reducing the response time of individual re-
quests. All these metrics are influenced by many parameters, such as the specific replica control
protocol, the underlying concurrency control, the chosen architecture, the message costs in terms of
number of messages and message rounds, the network delay, the specific workload characteristics,
and many more. The systems can have various bottlenecks that lead to saturation. The bottleneck
could be the primary replica, the network and its delay, a large proportion of write operations, the
concurrency control mechanism, the middleware, etc. Subtle differences in the configuration can
have a huge impact on performance. Therefore, it is important that one is able to conduct effective
performance experiments and to understand the performance results.

Performance analysis can be done by providing a real implementation and testing it using
various benchmark applications, by developing a simulation study, or by designing an analytical
model that depicts the influence of the main parameters. However, there do not exist many real
implementations that compare a whole suite of solutions. The problem is that in order to compare
all the different approaches in a fair manner, one would need to implement them all within a single
framework, making sure that when comparing two solutions that differ in a specific aspect, all other
parameters of the system remain the same. This is often unfeasible in practice.

Within the scope of this book it is impossible to provide a thorough analysis of all the issues
that influence the performance of a replicated system.Therefore, in this chapter, we restrict ourselves
to analyze a single performance metric, namely scalability, by using a simple analytical model that
shows how three specific parameters influence this metric. In particular, we look at the percentage
of write operations, whether symmetric or asymmetric update processing is used, and at partial
replication. This analysis stands as an example of how a performance study can help understand the
behavior of the system.

A system is scalable if the achievable throughput can be increased by adding more components
to the system. In the case of a replicated database, this means that the transactional workload that can
be handled by the system can be increased by adding more nodes to the system1. The more nodes,
the higher should be the maximum throughput in transactions per time unit. Perfect scalability is
given if an n-node system can achieve n times the throughput of a single node system, for arbitrary
n. However, this is only possible if no coordination among the nodes is needed. If there are only read
operations in the system, perfect scalability is possible as read operations can be easily distributed
1While in most of the book we prefer the term “replica" over the term “node" as we mostly assume full replication, use “node"
throughout this chapter as we consider both full and partial replication, and we prefer to have a homogenous terminology.

48 5. THE SCALABILITY OF REPLICATION

across the nodes. However, updates have to be executed at all copies of a data item. As the workload
increases, so does the absolute number of writes, requiring valuable resources on each node. These
resources are then no longer available for read operations. But how much does this update overhead
really influence scalability?

The analytical model that we present is very simple, and ignores many issues such as message
overhead, concurrency control, the number of operations per transaction, the architecture, whether
the protocol is eager or lazy, etc. Nevertheless, it provides a good first overview of the potential of
scalability for a replicated system.

The metric that will be used for the scalability is the scaleout. It determines the number of times
that a replicated system multiplies the maximum throughput of a non-replicated centralized system.
For instance, a scaleout of 3 means that the replicated system achieves a maximum throughput that
is 3 times the maximum throughput of a single node system.

5.1 MODEL
Our model assumes a ROWA approach where a read operation is executed at a single node and
write operations are executed at all nodes with corresponding data copies, either through symmetric
or asymmetric update processing. Furthermore, we assume an update anywhere approach where an
update transaction can be executed at any node with the corresponding data copies.

We assume n to be the number of nodes in the replicated system, and w the fraction of write
operations, i.e., 1 − w is the fraction of read operations. We also assume that all read and write
operations have the same processing costs. Furthermore, assume C to be the capacity of a 1-node
system in terms of operations per time unit it can process. In a non-replicated system C is exclusively
used for executing local transactions, that is, productive work. However, in the replicated setup, a
fraction of C at each node is devoted to installing writesets produced by other nodes. We term this
remote work. Therefore, each node of the replicated system uses a fraction of its processing capacity
for local work (Li) and the remaining capacity for remote work (Ri), that is:

C = Li + Ri (5.1)

In a non-replicated system, the whole capacity is used for productive local work, i.e., C = L.
The scaleout of the replicated system is the sum of the local (productive) work at each node divided
by the productive work of a non-replicated system:.

scaleout =
∑n

i=1 Li

C
(5.2)

That is, the scaleout indicates how many times the replicated system multiplies the capacity
of a non-replicated system. The more local work a node performs, the better the scalability of the
system.

Full replication and symmetric update processing. In a fully replicated system with symmetric
update processing each node has to perform as remote work all the write operations that are local at

5.2. THE ANALYSIS 49

other nodes. This is:
Ri = w · (n − 1) · Li (5.3)

Given that C = Li + Ri we get:

C = Li + w · (n − 1) · Li (5.4)

Solving the equation for local work Li we get

Li = C

1 + w(n − 1)
(5.5)

This means that the scaleout is:

scaleout =
∑n

i=1 Li

C
= n

1 + w · (n − 1)
(5.6)

Full replication and asymmetric update processing. When using asymmetric update processing, the
remote load is lower because applying the writesets is cheaper than executing the write operations.
Let the writing overhead, wo, be the fractional cost of applying a writeset with respect to fully
executing the write operation. For instance, if applying the writeset takes 1/4 of fully executing the
write operations, then wo would be 0.25.

In this case, the remote work for a node is Ri = w · wo · (n − 1) · Li , and therefore, C =
Li + w · wo · (n − 1) · Li . This results in Li = C

1+w·wo·(n−1)
. The scaleout for asymmetric update

processing is then:

scaleout = n

1 + w · wo · (n − 1)
(5.7)

Partial replication and asymmetric update processing. Finally, assume a data item has copies only at
r nodes (r ≤ n). Then, the remote work does not come from n − 1 but only r − 1 nodes. Thus, the
remote work can be expressed as Ri = w · wo · (r − 1) · Li . This leads to the following scaleout2:

scaleout = n

1 + w · wo · (r − 1)
(5.8)

5.2 THE ANALYSIS
Our analytical model has only four parameters that influence the scaleout, namely the percentage of
write operations, the number of nodes in the system, in case of asymmetric update processing the
2The calculation can also be argued in a different way. If the replicated system executes l operations submitted by clients then there
are l · (1 − w) read operations executed at one copy and l · w write operations executed at all copies, one having the full cost, the
others only having the asymmetric cost. Thus, the full capacity of the system is used as follows: n · C = (1 − w) · l + w · l · (1 +
(r − 1) · wo) leading to l = n·C

1+w·wo·(r−1)
. The scaleout is the number of operations executed in the replicated system divided

by the number of operations executed in a non-replicated system (which is C), resulting in the same scaleout formula as shown
in Equation 5.8.

50 5. THE SCALABILITY OF REPLICATION

write overhead wo, and in case of partial replication, the number of copies per data item. Let us now
have a look at how scalability is affected when we vary the values of these parameters. We first look
at full replication, and then at partial replication.

Full replication and symmetric update processing. Figure 5.1 shows the scaleout achievable (y-axis)
with increasing number of nodes (x-axis) and different values of write percentage w (different graphs)
for a system with full replication and symmetric update processing. With a workload consisting only
of read-only transactions the scaleout is perfect. That is, a system with n nodes achieves n times
the throughput of a non-replicated system. This is because no node needs to perform remote work
and all capacity is available for productive local work. On the other extreme of the spectrum, with
100% write operations no scalability is attained (scaleout = 1) because every node is executing all
write operations. An n-node system can handle the same load as a single node system. In between,
we can see that the scaleout quickly worsens with increasing w-values. With 20% write operations,
a 5-node system can produce 3 times the throughput of a 1-node system, while a 15-node system
only increases this value to 4. With 50% writes, scaleout levels at 2. The higher the value of w, the
earlier the time point that adding new nodes does not increase the overall capacity because most of
the capacity of a node is used to process remote writes. The system saturates.

Full replication and asymmetric update processing. Using asymmetric update processing, we have
three parameters. In order to compare with symmetric processing, we fix wo to 0.3 and vary again the
other two parameters.This value for wo has been taken from previous work that analyzed the writeset
overhead in real systems [Jiménez-Peris et al., 2002b]. Thus, Figure 5.2 shows the scaleout again
with increasing number of nodes and for varying values of w. Now, even with 100% write operations,
some scalability can be attained (up to 3 for 15 nodes). For mixed workloads, the scaleout is even
better. With 20% write operations, the scaleout with a small number of nodes is now very good,
close to the optimal, and even with 15 nodes we can still achieve a scaleout of 8.

In summary, however, one can observe that scalability is limited in all cases. We can make
writeset processing as efficient as possible, at some time point, as the absolute number of writes
increases in the system, a node is mostly busy applying writesets and has little capacity left to do
local work. As a result, as soon as the percentage of write operations is at a certain level, full replication
will definitely not be able to scale to hundreds of nodes. Updates are an inherent limitation for the
scalability of full data replication. Nevertheless, scaling up to 10s of nodes is already beneficial for
many applications.

Partial replication and asymmetric update processing Finally, let us have a look at partial replication.
We fix w = 0.2 and wo = 0.3. Figure 5.3 shows the scaleout with an increasing number of nodes
up to 15 nodes when there are 1, 2, 5, 10 and n/2 copies per data item. Scaleout is now very good.
With only 2 copies, the scaleout is nearly optimal, and even with 10 copies a scaleout close to 10 can
be reached for 15 nodes. It is interesting that, except for the case with n/2 copies, the scaleout does
not seem to saturate. We analyze this in more detail in Figure 5.4, where we look at the scaleout up
to 75 nodes. Indeed, we can see that the scaleout is linear in all cases except for r = n/2. The reason

5.3. RELATED WORK 51

Figure 5.1: Scaleout of symmetric update processing with varying w

Figure 5.2: Scaleout of asymmetric update processing with varying w

is simple. The write load does not increase with the number of nodes because each data item has
only a fixed number of copies, and therefore, the overhead to write a data item does not depend on
n. In contrast, when the number of data copies increases with the number of nodes, as in r = n/2,
then saturation will be reached.Thus, if it is possible to partition data in such a way that transactions
only access one partition and the workload is equally partitioned across all partitions, linear scaleout
can be achieved if the number of copies per data item remains constant.

5.3 RELATED WORK

As mentioned at the beginning of the chapter, comparing real implementations of various replication
approaches is difficult because of the complexity of real implementations. Lin et al. [2007] provide a
comparison of several replica control algorithms in a wide area setting in regard to response time and
bandwidth consumption. Otherwise, nearly all studies are based on analytical models or simulations.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-016.jpg&w=198&h=130
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-017.jpg&w=198&h=130

52 5. THE SCALABILITY OF REPLICATION

Figure 5.3: Scaleout of partial replication with varying number of copies

Figure 5.4: Scaleout of partial replication for large number of nodes

Simulation based comparisons have been performed, e.g., by [Carey and Livny, 1991], analyzing
locking, timestamp and optimistic replica control mechanisms, and by [Wiesmann and Schiper,
2005] analyzing replica control mechanisms based on total order multicast.

Analytical studies have evaluated various aspects of replicated systems, for example, the impact
of the location and number of data copies in partially replicated systems [Nicola and Jarke, 2000], the
scalability potential of partial replication [Serrano et al., 2007], abort rates [Bernabé-Gisbert et al.,
2008],quorum systems [Jiménez-Peris et al., 2003], and the performance of primary copy and update
anywhere replication [Elnikety et al., 2009].

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-018.jpg&w=197&h=130
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-019.jpg&w=197&h=130

53

C H A P T E R 6

Eager Replication and
1-Copy-Serializability

This chapter is devoted to eager replica control protocols providing 1-copy-serializability. As already
mentioned several times, replica control is tightly coupled with concurrency control in order to
achieve isolation at the global level. Database replicas are typically full-fledged database systems and
already offer some form of concurrency control. In the case of kernel based replication, the existing
concurrency control mechanism can be directly extended to work for the replicated environment.
In case replica control is implemented on top of the database replicas in a middleware layer, this
middleware typically has its own concurrency control mechanism. In some cases, it might be able to
rely on the isolation mechanisms implemented within the database replicas to simplify the tasks at the
middleware layer. In any case, it is possible that the middleware implements a different concurrency
control mechanism than what is found within the database replicas.

This chapter only covers replica control protocols based on strict 2PL. 2PL, being pessimistic,
avoids executions that might lead to a non-serializable schedule. Transactions have to wait for other
transactions to terminate if they perform conflicting operations.There exist other well known mech-
anisms, such as optimistic concurrency control that provide serializability. It lets each transaction
execute independently, and only at the end of transaction a validation takes place to see whether the
transaction conflicts with other concurrent transactions. If this is the case, some transactions have
to be aborted in order to guarantee that the execution remains serializable. Basically, no commercial
database system uses optimistic concurrency control that provides serializability, and that might be
one of the reasons why there exist few replica control protocols that are based on it. Nevertheless, the
isolation level snapshot isolation can be implemented via optimistic techniques, and replica control
based on snapshot isolation is very popular. The next chapter is devoted to replica control based on
snapshot isolation and also briefly discusses an algorithm based on optimistic concurrency control
that provides 1-copy-serializability.

Chapter 3 presented a pessimistic replica control protocol based on distributed 2PL. It fol-
lowed a kernel based architecture as clients directly connect to the database replica. In this chapter,
we focus on middleware based approaches. We present a suite of protocols that introduce, in a
stepwise manner, the challenges associated with middleware based replication, and the issues that
arise when using pessimistic concurrency control. The first protocol uses a centralized middleware
and is a straightforward modification of the kernel based eager protocol presented in Chapter 3.
The following two protocols discuss solutions with a decentralized middleware depicting the chal-

54 6. EAGER REPLICATION AND 1-COPY-SERIALIZABILITY

lenges and disadvantages that come with decentralization. They also show how asymmetric update
processing can be deployed. For each of the protocols, we outline why 1-copy-serializability and
1-copy-atomicity is provided in the failure-free case, and we discuss whether 1-copy-atomicity is
given in the failure case. The failover tasks that have to be performed so that clients can continue
submitting requests to the system are discussed in detail in Section 9.1. Section 9.1 also discusses
the recovery tasks needed to achieve 1-copy-durability.

6.1 CENTRALIZED MIDDLEWARE
We start with a centralized middleware approach. In this protocol, the centralized middleware
performs replica control and concurrency control. It adopts a ROWA strategy with symmetric
update processing where read-only operations are executed at any replica, and write operations are
executed everywhere.

6.1.1 PROTOCOL
Figure 6.1 depicts the protocol. All clients are connected to the middleware and send their read,
write and commit requests to the middleware. We ignore client induced abort requests for simplicity.
The middleware performs concurrency control. For that purpose it implements a lock manager.

• When a client requests a read operation (lines 1-4), a shared lock is acquired and the operation
is submitted to any replica as all replicas have the current state of all data items. When the
replica returns the response, it is forwarded to the client.

• A write operation (lines 5-8) acquires an exclusive lock and is sent to all replicas.The middleware
replies to the client once all replicas have executed the operation.

• At commit time (lines 9-11), the commit request is sent to all replicas that were involved in
the transaction and the locks are released. For read-only transactions only a subset of replicas
might be involved, for update transactions all replicas are involved.

• Since the middleware implements standard strict 2PL, deadlocks might occur (lines 12-15).
But they are not distributed as the lock manager of the middleware has global knowledge of
all locks. Thus, they are easy to detect and resolve at the middleware. One of the transactions
involved in the deadlock needs to be aborted. The abort request is sent to all database replicas
involved in the transaction; the locks are released and the abort information returned to the
client.

6.1.2 EXAMPLE EXECUTION
Figure 6.2 shows an example execution of the protocol. In this example, there are two replicas RA

and RB and two transactions. T1 reads and writes x, T2 is a read-only transaction that reads x and
y. We show the execution at the middleware and its interaction with clients and database replicas
but ignore the execution at the database replicas for simplicity. When T1 submits its first operation,
the middleware sets a shared lock on x and submits the operation to RA. For the first operation of

6.1. CENTRALIZED MIDDLEWARE 55

Upon: ri(x) for transaction Ti

1: acquire shared lock on x

2: send ri(x) to any replica
3: wait until receive response from the replica
4: return x

Upon: wi(x) for transaction Ti

5: acquire exclusive lock on x

6: send wi(x) to all replicas
7: wait until receive ok from all replicas
8: return ok

Upon: commit Ti

9: send commit(Ti) to all participating replicas
10: release locks of Ti

11: return ok
Upon: deadlock
12: choose transaction Ti involved in deadlock
13: send abort(Ti) to all participating replicas
14: release locks of Ti

15: return aborted due to deadlock

Figure 6.1: Strict 2PL protocol with centralized middleware

T2 it also successfully acquires a shared lock on x and the read operation is executed on RB . When
T1’s second operation requires an exclusive lock on x, it is not granted because it conflicts with T2’s
shared lock, and T1 has to wait.Then, T2 needs a shared lock on y, which is immediately granted, and
the read is performed, now on replica RA. When T2 submits the commit request, the middleware
forwards it to all replicas and it releases all locks. The exclusive lock on x is now granted to T1. The
write operation is submitted to both RA and RB , as well as the commit later on.

6.1.3 ALGORITHM PROPERTIES
1-copy-isolation. In principle, strict 2PL at the middleware provides 1-copy-serializability. The
only difference to a non-replicated system is that the write operations are executed at all replicas,
but as this occurs at the same time at all replicas, there is no conceptual difference. This reasoning
assumes that the underlying database always reads the latest written version of a data item, i.e., if
wi(x) was the last write operation on x before read operation rj (x), then rj (x) reads the value
written by wi(x). This is typically given for database systems that implement locking themselves.

1-copy-atomicity in the failure free case. In order to provide 1-copy-atomicity, database replicas
must be able to commit/abort a transaction whenever the middleware requests it. Again, if the

56 6. EAGER REPLICATION AND 1-COPY-SERIALIZABILITY

Figure 6.2: Example execution with centralized middleware

database system uses locking, this will typically be given. When a lock is granted at the middleware
layer the lock will also be granted at the database replica and the operation will succeed. Thus, at
commit time, the commit at each replica will be successful.

1-copy-atomicity in the failure case. We distinguish between failure of the middleware and failure of
a database replica. If one of the database replicas fails, the middleware simply stops sending requests
to this replica, following the ROWAA approach.The failure of the middleware is more complicated.
Transactions for which no database replica received the commit request can be aborted by all database
replicas.Transactions for which all database replicas received the commit are committed at all replicas.
The problem is constituted by transactions for which some, but not all, replicas received the commit
as 1-copy-atomicity is violated for these transactions. In order to guarantee 1-copy-atomicity for all

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-020.jpg&w=230&h=321

6.2. DECENTRALIZED MIDDLEWARE 57

transactions, the middleware and the database replicas must execute the commit using an agreement
protocol such as 2-phase-commit.

Note however, that once the middleware fails, the system is no longer available, whether
1-copy-atomicity is provided or not.

Replicated centralized middleware. Using a replicated centralized middleware architecture, a
backup middleware takes over if the master middleware fails. The backup middleware must re-
ceive enough information from the master middleware during normal processing in order to be able
to take over in the case of failure, and to guarantee 1-copy-atomicity. Clients have to be reconnected
to the new middleware. These issues are described in more detail in Section 9.1.

6.1.4 DISCUSSION
The protocol that we have presented in this section and the pessimistic protocol of Chapter 3 execute
write operations synchronously at all replicas and require a 2-phase commit in order to guarantee
1-copy-atomicity in the failure case. With this, a transaction only commits if it is executed at all
replicas. If one replica is highly loaded due to a complex read-only operation, all update transactions
are delayed as their write operations at this replica will take a long time.The following two protocols
avoid such behavior.

One fundamental problem of this and the following middleware based protocols is that client
read and write operations are typically not explicit operations on individual data items. In relational
database systems, the SQL interface uses declarative descriptions and a single statement can eas-
ily access many records of different tables. When concurrency control is implemented within the
database kernel, the execution of a statement will eventually access the individual records, and this
is the time point where locks are typically set. Therefore, the granularity of a lock is typically on a
record level. However, the middleware only sees the original SQL statement and it is often impossi-
ble to know what records will actually be accessed.Therefore, a data item from the perspective of the
middleware is much coarser, e.g., a database table, because they are easily extractable when parsing
an SQL statement. As a result, concurrency is considerable restricted as transactions are more likely
to conflict at the table level than at the record level.

6.2 DECENTRALIZED MIDDLEWARE

In this section, we discuss for the first time a replica control protocol that exploits group communi-
cation semantics in order to provide a fully decentralized solution.

Features. In Chapter 3, we have seen that independent execution of transactions on different
replicas can lead to distributed deadlocks. Furthermore, both the protocol of Chapter 3 and the
protocol of the last section lead to delays and blocking of update transactions if there are many
concurrent read-only transactions in the system. Finally, they require an expensive 2-phase-commit
protocol in order to guarantee 1-copy-atomicity in the failure case.

58 6. EAGER REPLICATION AND 1-COPY-SERIALIZABILITY

The protocol in this section eliminates these restrictions. Update transactions at each replica
are executed independently, and as a result, a read-only transaction at one replica does not delay
update transactions at other replicas. There are no distributed deadlocks. Furthermore, a 2-phase-
commit is not necessary.

Main ideas. The main idea to achieve these properties is to exploit the semantics of group commu-
nication systems to support concurrency control and failure handling. More specifically, by sending
transaction requests in total order to all replicas, they are delivered at all replicas in the same total
order. If they use this total order as guideline for the serialization order, transactions can be seri-
alized in the same way at all replicas. Furthermore, by exploiting the delivery guarantees provided
for multicast messages a message is delivered to either all or none of the replicas, guaranteeing
1-copy-atomicity in the failure case.

Restriction. The presented protocol, however, has one major restriction, that is actually quite com-
mon for pessimistic middleware approaches. It expects that clients do not submit the individual read
and write operations of a transaction but make a call that requests the execution of a transaction.
Furthermore, given such a call, the middleware must be able to know what data items the transaction
is going to access. Such setup is given in the following situations:

• Transactions are implemented as stored procedures within the database. A call to one of these
procedures is a request to execute a transaction.The code of the stored procedures can be parsed
in advance, and the SQL statements and the tables to be accessed can be extracted. Therefore,
when a client makes a call to a stored procedure, the middleware knows all tables that are going
to be accessed, and can perform concurrency control at the table level.

• Transactions are implemented as methods within application programs and an application
server hosts the programs. The real clients make calls to these methods. Again the application
programs can be parsed in advance, and the SQL statements and tables to be accessed by each
transaction can be extracted. If the middleware is collocated with the application server, it can
intercept the client requests, and knows the transaction and the tables to be accessed.

In both cases, it might even be possible to extract the data items to be accessed at a finer
level. Stored procedures and program methods are typically parameterized and the client provides
input parameters when it makes the call. Example parameters for a purchase transaction could be the
client identifier and a product identifier. This might allow the middleware to determine the actual
data records that will be accessed, and allow for concurrency control at a finer level. For simplicity,
however, we assume in this chapter that all data items are tables.

Note that by knowing all statements of a transaction in advance, it is also easy to determine
whether a transaction is an update or a read-only transaction.

6.2.1 PROTOCOL
The protocol is depicted in Figure 6.3. It uses not only symmetric update processing, it actually
executes the full update transaction at all replicas. There is a middleware instance on top of each

6.2. DECENTRALIZED MIDDLEWARE 59

Upon: submit of a read-only transaction Ti to Rj

1: request necessary shared locks for Ti in atomic step
2: wait until all locks are granted
3: execute Ti at the local database
4: release locks of Ti

5: return result
Upon: submit of an update transaction Ti to Rj

6: Ti.replica = Rj

7: multicast Ti in total order to all middleware replicas
Upon: delivering transaction Ti in total order at Rj

8: request necessary shared and exclusive locks for Ti in atomic step
9: wait until all locks are granted

10: execute Ti at the local database
11: release locks of Ti

12: if Ti.replica = Rj then
13: return ok

Figure 6.3: Strict 2PL protocol with decentralized middleware

database replica. For simplicity of description, we assume transactions are implemented as stored
procedures within the database. However, the other option mentioned is conceptually similar. Clients
connect to one middleware replica and submit their requests for transactions to that replica.

• When a client submits a read-only transaction (lines 1-5), the transaction is only executed at
that replica. The middleware replica requests all locks in one atomic step, e.g., by putting the
request operation into a critical section. When they are granted, the transaction is executed at
the database. When execution completes (the transaction has committed at the local database
replica), the corresponding locks are released, and the result is returned.

• When a client submits an update transaction (lines 6-7), the middleware replica firsts tags
itself as the local replica, and then multicasts the transaction request to all replicas in total
order. The total order multicast guarantees that even if different replicas multicast transactions
concurrently, the requests are delivered to all replicas in the same order.

• When a transaction is delivered to a replica in the given total order (lines 8-13), all locks are
requested, again within an atomic step, and when they are granted, the transaction is executed,
and the locks released. Only the local replica returns the result back to the client.

6.2.2 EXAMPLE EXECUTION
Figure 6.4 shows an example execution. There are replicas RA and RB and transactions T1 to T3.
We only show the actions at the middleware replicas MWA and MWB and their interactions with
clients and the database replicas DBA and DBB but not the execution at the database replicas.

60 6. EAGER REPLICATION AND 1-COPY-SERIALIZABILITY

Figure 6.4: Example execution with decentralized middleware

There are two coarse-granularity items, x and y (e.g., tables). T1 reads and writes x, T2 updates x

and y, and T3 is a read-only transaction that reads x and y. T1 is local at RA and T2 and T3 are
local at RB . T1 and T2 are submitted concurrently to their respective replicas which multicast the
requests in total order. T1 is ordered first and T2 second at both middleware replicas. Therefore,
both acquire first the exclusive lock for T1 on x and submit the transaction for execution to the local
database. When T2 is delivered at a middleware replica, it requests locks on x and y. The lock on y

is immediately granted, but the lock on x must wait since there is a conflicting lock by T1, and the
transaction as a whole is blocked. Now, T3 is submitted to MWB , requests the locks on x and y and
has to wait because of the exclusive locks by T1 and T2. When T1 completes at a database replica, the
corresponding middleware replica releases the lock on x, and the local middleware replica MWA

returns the confirmation to the client. Note that completion can occur at different times at the two
replicas. Now T2 gets its last lock, is executed and releases its locks on x and y. MWB returns the
ok to the client. Finally, T3 gets all its locks at MWB and executes completely locally.

6.2.3 ALGORITHM PROPERTIES
1-copy-isolation. The protocol provides 1-copy-serializabiliy. Each local serialization graph is
acyclic because each replica uses strict 2PL. Furthermore, the union of these local graphs can-
not contain a cycle that consists of only update transactions. Conflicting update transactions are

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-021.jpg&w=228&h=211

6.2. DECENTRALIZED MIDDLEWARE 61

executed at each replica in exactly the same order as they acquire the locks in the same order due to
the total order multicast. Therefore, if Ti → Tj in one local graph, then Ti → Tj in all local graphs.

Hence, if there is a cycle, it must contain at least two read-only transactions TA and TB

that executed at replicas RA and RB respectively, and the cycle must be of form TA → Ti . . . →
TB . . . → Tj → TA, where Ti and Tj are update transactions.Ti �= Tj as otherwise RA’s serialization
graph would have a cycle. Tj → TA → Ti means Tj acquired its locks before Ti on replica RA.
Ti . . . → TB . . . → Tj means that Ti acquired its locks before Tj on replica RB . However, this is
impossible as all transactions acquire locks in the same order at all replicas. Therefore, the union of
all local serialization graphs cannot contain a cycle.

Of course, this reasoning assumes that the database replicas indeed perform all operations as
requested by the middleware.

1-copy-atomicity in the failure-free case. The protocol has no deadlocks as all transactions acquire
all their locks in an atomic step. Therefore, assuming deterministic execution of all transactions,
there are no unilateral aborts, and all replicas commit the same set of update transactions in the
failure free case.

1-copy-atomicity in the failure case. In order to handle the failure case, we have to analyze with
which reliability level transactions are multicast. If we use reliable multicast it is possible that a
replica multicasts a transaction; it is delivered locally; the replica executes it, commits it, returns the
ok to the client and then fails before the transaction is delivered at any other replica. Thus, only the
failed replica has committed the transaction while it has to be considered aborted in the rest of the
system. Although this might be very unlikely, it is possible. Therefore, reliable multicast can lead to
executions that violate 1-copy-atomicity.

If we use uniform reliable multicast, then we have the guarantee that whenever a message is
delivered to any replica (even if the replica fails immediately after), the message is delivered to all
available replicas. As a result, whenever one replica commits a transaction, all other available replicas
also commit it. 1-copy-atomicity is provided.

6.2.4 DISCUSSION
As discussed before, compared to the protocol based on a centralized middleware, each replica
executes the update transactions independently, and the local replica can return the ok to the user
once the transaction has completed locally. It must not wait for the other replicas to execute the
transaction. Therefore, any conflicts with read-only transactions on remote replicas have no impact
on the response time seen by the client. Furthermore, no 2-phase-commit is necessary.

One major drawback of the presented protocol is the fact that all update transactions are fully
executed at all replicas. First, this is even worse than symmetric update processing as even the read
operations of update transactions are executed everywhere. Second, it requires transaction execution
to be completely deterministic to guarantee that all transactions commit at all replicas. The next
protocol we present eliminates these problems.

62 6. EAGER REPLICATION AND 1-COPY-SERIALIZABILITY

Upon: delivering transaction Ti in total order at Rj

1: request necessary shared and exclusive locks for Ti in atomic step
2: wait until all locks are granted
3: if Ti.replica = Rj then
4: execute Ti at the local database
5: retrieve Ti ’s writeset WSi

6: multicast WSi to all replicas (no order required)
7: release locks of Ti

8: return ok
Upon: delivering writeset WSi of Ti at Rj

9: if Ti.replica �= Rj then
10: apply WSi at local database
11: release locks of Ti

Figure 6.5: Strict 2PL protocol with decentralized middleware and asymmetric
update processing

6.3 DECENTRALIZED MIDDLEWARE WITH ASYMMETRIC
PROCESSING

This last protocol is a minor variation of the previous protocol. It implements asymmetric update
processing, and hence, it allows for non-deterministic execution (see Chapter 4) and has better
scalability (see Chapter 5).

6.3.1 PROTOCOL
The protocol differs from the previous protocol depicted in Figure 6.3 only in the actions that occur
when a multicast update transaction is delivered in total order. Read-only transactions are handled
exactly as in the previous protocol, requesting locks in an atomic step and executing completely locally.
Similarly, update transactions are first multicast in total order to all replicas. Therefore, Figure 6.5
only shows the actions necessary when a transaction is delivered in total order. The replica requests
the locks in an atomic step (lines 1-2) just as in the previous protocol. The differences start here.
Only the local replica actually executes the transaction, and then multicasts the writeset to the other
replicas before it releases the locks and returns to the client. No ordering is required (lines 3-8). The
other replicas upon delivery of the writeset simply apply it before they release the locks (lines 9-11).

6.3.2 EXAMPLE EXECUTION
Figure 6.6 shows an example execution of the protocol. We use the same example as before with
two replicas and three transactions. MWA again multicasts T1 and WSB multicasts T2, and T1 is
delivered before T2 at both replicas. Both replicas set an exclusive lock on x for T1 while T2’s lock on

6.3. DECENTRALIZED MIDDLEWARE WITH ASYMMETRIC PROCESSING 63

Figure 6.6: Example execution: decentralized middleware and asymmetric processing

x is blocked. But only MWA submits the execution of T1, extracts the writeset and multicasts it to
all replicas. It then releases the locks and returns to the user. When its own writeset is later delivered,
it simply ignores it. At MWB , the writeset of T1 is applied and the locks released. Now T2 can get its
lock, execute at RB , the writeset is multicast and the locks released. When the writeset is delivered
at MWA, it applies it and releases the locks. MWB submits T3, once the locks of T2 are released.

6.3.3 ALGORITHM PROPERTIES
1-copy-isolation. The only aspect different to the previous algorithm is the asymmetry in processing
the writesets. This has no effect on 1-copy-serializability.

1-copy-atomicity in the failure-free case. Transactions do not need to behave deterministically to
guarantee that all replicas commit the same set of update transactions.

1-copy-atomicity in the failure case. We assume that the transactions are sent using uniform reliable
multicast,but the writeset uses only reliable multicast. If a replica fails after having sent the transaction
but before sending the writeset, the others have acquired the locks for this transaction but are blocked

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-022.jpg&w=240&h=253

64 6. EAGER REPLICATION AND 1-COPY-SERIALIZABILITY

waiting for the writeset. They cannot simply abort the transaction and release the locks because the
local replica could have already committed the transaction, but failed before sending the writeset.

There are two options to handle this case and avoid blocking. First, after being informed about
the failure, all replicas could simply execute the transaction as in the previous protocol. Alternatively,
one of the surviving replicas is assigned the task to execute the transaction and send the writeset to
the others. In both cases, the transaction commits at the available replicas. The failed replica might
have committed the transaction, or it was still active at the time of the failure.This is correct behavior
and provides 1-copy-atomicity.

6.4 RELATED WORK

Eager replication has been explored extensively in the early 80s. Bernstein et al. [1987] summa-
rize some of the work and also present a formal model of 1-copy-serializability. Several replication
solution are proposed that combine replica control with a wide range of concurrency control mech-
anisms [Bernstein et al., 1987; Carey and Livny, 1991]. Failures, both node and communication
failures, are a main focus of much of the work [Abbadi and Toueg, 1986; Bernstein and Goodman,
1984]. Some of these approaches have become well-known as they have appeared in several text-
books.

Since Gray et al. [1996] pointed out the limits of eager replication, a new wave of research
started attempting to overcome those limitations. The idea of exploiting the ordering guarantees
of multicast primitives is first explored by Agrawal et al. [1997]; Holliday et al. [1999]; Stanoi et al.
[1998]. Kemme and Alonso [2000a] propose eager replication protocols based on total order multi-
cast that provide different levels of isolation, among them 1-copy-serializability. All these solutions
assume kernel based replication where the base mechanism is strict 2PL. Nevertheless, some of the
approaches include optimistic extensions that detect conflicts between transactions executing on
different replicas only at the end of transaction [Kemme and Alonso, 2000a; Pedone et al., 2003].

Postgres-R [Kemme and Alonso, 2000b] integrates a multicast-based protocol into a real
database kernel (PostgreSQL). Building a serialization graph during transaction execution is another
possibility to provide 1-copy-serializability [Anderson et al., 1998].

There exist many middleware based approaches that use pessimistic protocols [Amza et al.,
2003a; Cecchet et al., 2004; Jiménez-Peris et al., 2002b; Kemme et al., 2003; Patiño-Martínez et al.,
2005]. Kemme et al. [2003] propose a decentralized middleware where the database is parti-
tioned, the full transaction is known in advance and transactions can only access a single parti-
tion. Concurrency control is based on data partitions and update transactions are fully executed at
all replicas. The protocol in Section 6.2 is conceptually very similar. Jiménez-Peris et al. [2002b];
Patiño-Martínez et al. [2005] also use coarse granularity locking and require the data items to be
accessed to be known in advance but transactions can access any arbitrary set of data items, and
transactions use asymmetric update processing. The solution is based on a full-fledged replication
middleware, Middle-R, on top of a relational database system.The protocol presented in Section 6.3

6.4. RELATED WORK 65

is similar to one of the protocols described in [Jiménez-Peris et al., 2002b; Patiño-Martínez et al.,
2005].

Many protocols use a centralized middleware [Amza et al., 2003a,b; Cecchet et al., 2004]
similar to what we describe in Section 6.1. Amza et al. [2003a,b] also require the data to be accessed
and operation types (read/write) to be known at the start of the transaction so that locks can be
requested at the transaction start time. The protocols described by Cecchet et al. [2004] allow read
operations from different transactions to be executed concurrently at a given replica. However, at
any given point in time only a single update, commit or abort operation is executing at a replica.

67

C H A P T E R 7

1-Copy-Snapshot Isolation
So far, the book has focused on serializability and 1-copy-serializability as correctness criterion,
implemented through locking. However, using locking, a single long lasting read-only transaction
that scans entire tables can block many concurrent writers on these tables.

The mechanism simply does not scale to many concurrent transactions.Therefore, in practice,
it is very common to increase concurrency by offering lower levels of isolation than serializability.
Lower levels of isolation allow some non-serializable executions leading to what is referred to as
anomalies but avoid some of the blocking or abort behavior. As long as the application can live with
such anomalies, the throughput increase can be dramatic. In a replicated system that is designed for
scaleout, it is even more important to offer high concurrency as a restrictive isolation level will easily
become the bottleneck of the system leaving the available computational resources under-utilized.
Scaling by adding new replicas will not help if concurrency control is the bottleneck.

In this chapter, we look at snapshot isolation (SI), which was briefly introduced in Chapter 2.
SI is an isolation level very close to serializability, only allowing some very specific anomalies to occur.
SI is implemented in many commercial database systems as it avoids read-write conflicts, i.e., read
operations can always run fully concurrent to write operations without causing any conflicts. It turns
out that concurrency control mechanisms that implement SI are very well suited for a replicated
environment. As we have seen in the last chapter, re-implementing locking at the middleware layer
leads to coarse-grained concurrency control, restricting the potential for concurrency. In contrast, it
is fairly simple to implement middleware based replication based on SI.

In the following, we first introduce the concepts of snapshot isolation, and then present the
notion of 1-copy-snapshot isolation (1-copy-SI) suitable for a replicated environment. We remain
rather informal aiming in providing the reader a feeling of the fundamental principles behind this
isolation level.

From there, we present a suite of replication protocols that provide SI. All protocols that
we present are middleware based, showing that this isolation level can be achieved relatively easy
outside the database kernel. All protocols rely on asymmetric update processing as this provides
better scalability under update workloads. In all cases, we assume that the underlying database
replicas provide SI. In fact, concurrency control is not completely implemented at the middleware
layer (as was the case in the previous chapter), but it is distributed across middleware and underlying
database systems. In particular, the handling of read operations is always left to the database replicas.

The first protocol that we present follows a primary-copy approach with a single middleware
component. With this protocol the reader can get acquainted with the issues to be tackled by means
of a relatively simple protocol. By resorting to a primary copy approach, handling of concurrent

68 7. 1-COPY-SNAPSHOT ISOLATION

update transactions is concentrated on the primary, and the middleware has little to do in regard
to concurrency control. The second protocol uses an update anywhere approach but still relies on
a single middleware. As updates are now possible at all replicas, the middleware has to take over
some of the concurrency control tasks. Finally, the third protocol adopts a decentralized middleware
approach, exploiting group communication primitives similar to the decentralized protocols in the
last chapter.

For each of the protocols, we outline why 1-copy-snapshot isolation and 1-copy-atomicity is
provided in the failure-free case. 1-copy-atomicity in the failure case is also discussed. A detailed
description of the failover procedure for each of the protocols is given in Section 9.1. Furthermore,
1-copy-durability is only discussed in Section 9.1.

7.1 1-COPY-SNAPSHOT ISOLATION

7.1.1 SNAPSHOT ISOLATION IN A NON-REPLICATED SYSTEM
Definition. While snapshot isolation is an isolation level, it makes some assumptions about the
implementation. In particular, it assumes a multi-version system. Whenever a transaction writes a
data item x, it creates a new version of x. When the transaction commits, the version is installed.
The order in which transactions commit determines an order on installed object versions. That is,
if transaction Ti and Tj both write data item x, Ti commits before Tj , and no other transaction
commits between Ti and Tj and writes x, then Ti ’s version is directly ordered before Tj ’s version of
x.

Assuming such a multi-version system, snapshot isolation is defined through two properties:
Snapshot Read and Snapshot Write.Snapshot read provides each transaction a snapshot of the database
as of the time it starts: when a transaction Ti performs a read operation ri(x), it reads the version
of x created by transaction Tj that was the last to write x and commit before Ti started. That is, Ti

reads the version that was the last installed version at the start time of Ti . Writes that occur after
the transaction starts are not visible. Snapshot write disallows two concurrent transactions (neither
commits before the other starts) to update the same data item. This means that if two concurrent
transactions attempt to update the same data item, one of them has to abort.

The snapshot read property provides high concurrency as read operations do not interfere
with write operations. The snapshot write property helps avoiding some important anomalies as we
will see shortly.

Examples. Let us have a look at a few examples to get a better feeling for this isolation level.
Figure 7.1 shows five schedules. As snapshot isolation is based on a multi-version system, we have
to distinguish the various versions. We do so by tagging data item versions with the transaction that
created it. For instance, a read ri(xj) indicates that Ti reads the version of data item x that was
created by transaction Tj , and a write wi(xi) means that Ti writes x creating version xi . We assume
that an initial transaction T0 has created initial versions of all data items.

7.1. 1-COPY-SNAPSHOT ISOLATION 69

Figure 7.1: Example SI schedules

Schedule S1 shows an SI schedule where transaction T1 writes x and y, while T2 reads the
two data items. The reading transaction T2 reads from a committed snapshot, namely the versions
written by T0 and does not see the versions created by T1. As a result, although T2’s read on y takes
place after T1’s write, conceptually, it is ordered before the write because T2 does not read the version
written by T1 but an earlier version. This makes the execution serializable. The serialization graph
shown below the schedule has only an edge from T2 to T1.

In contrast, S2 is a schedule that is not allowed under SI. T1 and T2 have the same operations
as in S1, but now T2 reads the version of y written by T1, which violates the snapshot read property.
Note that this execution is not serializable as the serialization graph has a cycle.

S3 is also not an SI schedule. T1 and T2 are concurrent and both update data item x. This
violates the snapshot write property. Note that S3 is also not serializable as shown by the cycle in
the serialization graph. The schedule has the lost update anomaly. Both transactions first read x and
then write it. Both read the initial version x0. If the write operation is influenced by the preceding
read operation, T2 performs its write on the outdated value x0. T1’s update can be considered lost.
In general, SI disallows schedules with lost updates.

Schedule S4 shows a schedule that is possible under SI but is not serializable. As the transac-
tions update different data items, the snapshot write property is not violated. However, T1’s read on
x occurs before T2’s conflicting write, and T2’s read before T1’s conflicting write leading to a cycle in
the serialization graph.

Finally, S5 shows a schedule that is actually serializable but not SI. As the transactions are
concurrent and write blindly the same data item, the snapshot write property is violated.

Implementation. Let us have a simplified view at how snapshot isolation could be implemented
within a database system. We assume this implementation for our replication protocols. When a
transaction Ti writes data item x, it creates a new version of x. During execution, this version is only
visible to Ti itself (a transaction can see its own writes). Each version is tagged with the transaction

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-023.jpg&w=297&h=126

70 7. 1-COPY-SNAPSHOT ISOLATION

identifier, which must be unique. When a transaction commits, it receives a commit timestamp
from a commit counter that is increased upon each commit. When a transaction Ti performs a read
operation ri(x), it looks for the version of x tagged with transaction Tj such that Tj committed
before Ti started, and Tj has the largest commit timestamp of all transactions that wrote x and
committed before Ti started. Therefore, when looking at transactions T1 and T2 in schedules S1 and
S2 of Figure 7.1, execution would follow S1 and T2 would read version x0 because this is the last
installed version when T2 started.

Snapshot write requires that whenever a transaction Ti has updated a data item x and commits,
and a concurrent transaction Tj also wants to update x, Tj has to abort. This can be implemented
via locking or via a validation (or certification) phase at the end of transaction. Locking reflects a
pessimistic implementation while using validation is an optimistic mechanism. We only look at the
second alternative, simply because it is easier to describe. When the commit of transaction Ti is
submitted, a validation takes place. It checks for each data item x written by Ti whether a concurrent
transaction Tj that already committed also wrote x. If yes, Ti aborts by discarding its versions. If not,
Ti ’s versions become the last installed versions. Certification has to be done in a critical session. This
determines the commit order and also generates a total order on installed versions. When looking at
Figure 7.1, validation of T1 would succeed in all schedules as it is always the first to validate. For T2,
there would be no validation in S1 and S2, as T2 is a read-only transaction. Validation would fail in
S3 and S5 as T2 writes the same data item x as concurrent transaction T1, which already committed,
and T2 would abort instead of committing. However, in schedule S4, validation of T2 would succeed
as it writes a different data items than T1.

Anomalies. As just seen, SI allows some non-serializable schedules, thus, some SI executions have
serialization graphs with cycles. However, the only cycles possible are those that include a double
edge T1 → T2 → T3, where both edges Ti → Tj are induced by Ti reading a data item x, and then
Tj writing the next version of this data item [Adya, 1999; Fekete et al., 2005]. This can be observed
in schedule S4 of Figure 7.1. Thus, in order to use serialization graphs for testing the SI property,
the edges must be labelled with the type of conflict that caused the edge: Ti reads a data item and Tj

creates the next version (rw), Ti writes a data item and Tj reads that version (wr), Ti and Tj write
the same data item and Tj creates the version that follows Ti in the version order (ww). SI disallows
all cycles except of those with consecutive rw-edges.

7.1.2 SNAPSHOT ISOLATION IN A REPLICATED SYSTEM
Moving to a replicated environment, it is, similar to serializability, not sufficient to guarantee that
all local executions obey the SI rules. In fact, 1-copy-SI for a ROWA execution can be defined in
the same spirit as 1-copy-serializability. A replicated execution is 1-copy-SI if

i. The local execution at each replica follows the SI properties.

ii. All replicas commit the same set of update transactions.

7.2. PRIMARY COPY – CENTRALIZED MIDDLEWARE 71

Figure 7.2: Execution that violates 1-copy-SI

iii. There exists a 1-copy execution that is allowed under SI such that whenever there is an edge
Ti → Tj labelled with rw/wr/ww in the local serialization graph of a replica, then the same
edge occurs in the serialization graph of the 1-copy execution.

Similar to 1-copy-serializability, 1-copy-SI can be tested by looking for cycles in the serialization
graph. In particular, one can test condition (iii) by building the union of the local serialization graphs.
Condition (iii) holds if there are no cycles or only cycles that include two consecutive rw-edges.

In order to avoid any other cycles, it is crucial that each replica exposes the same sequence of
snapshots to reading transactions. If this is not the case, 1-copy-SI is violated. Let us have a look at
an example. In Figure 7.2, there are two replicas RA and RB .There are four transactions. T1 writes x,
T2 writes y, and both T3 and T4 both read x and y. As ROWA is used, T1’s and T2’s writes execute at
both replicas. Furthermore, T3 executes at RA and T4 at RB . At RA, the execution is serial, executing
first T1, then T3 then T2. At RB , the execution is also serial in the order T2, T4, T1. Obviously, both
local schedules are SI, and both replicas commit the same update transactions. However, the union
of the serialization graphs contains a cycle T1

wr−→ T3
rw−→ T2

wr−→ T4
rw−→ T1. This cycle does not

contain consecutive rw-edges, and thus, the execution is not 1-copy-SI. The problem is that T3 sees
a snapshot where T1 had committed but not T2 while T4 sees a snapshot where T2 had committed
but not T1. Obviously, there is no 1-copy schedule that could fulfill both conditions.

7.2 PRIMARY COPY – CENTRALIZED MIDDLEWARE

This section presents a first protocol that provides 1-copy-SI in a replicated system. There is a
centralized middleware that accepts all client requests and routes them to the proper replicas. When
receiving the first operation of a transaction, the middleware must know whether it is a read-only
transaction or an update transaction. In SQL implementations, typical client interfaces provide a
mechanism to do such declaration, and we assume here that the middleware can distinguish between
read-only and update transactions. Update transactions are executed concurrently at the primary but

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-024.jpg&w=127&h=120

72 7. 1-COPY-SNAPSHOT ISOLATION

committed sequentially. The resulting writesets are propagated to the secondaries that apply them
sequentially following the primary commit order. Read-only transactions are routed to any of the
secondaries.

7.2.1 PROTOCOL
Figure 7.3 shows the protocol at the middleware. When the middleware receives the first operation,
it decides on the replica that executes the transaction (lines 1-5). If it is an update transaction, it
is the primary; if it is a read-only transaction, it is routed to one of the secondaries distributing
the load among them. All following operations of the transaction are submitted to the same replica
(lines 6-7). Update transactions are executed concurrently at the primary replica which provides SI
executions. At commit time, read-only transactions are simply committed at their respective replica
(lines 8-10). For update transactions (lines 12-18), the middleware extracts the writeset, commits
the transaction, puts the writeset into the write queues that are maintained for each secondary, and
returns the confirmation to the client. Commit might not be successful, as the SI mechanism in the
primary might abort a transaction due to write/write conflicts with other transactions. In this case,
the middleware informs the client about the abort. Writesets are applied and committed sequentially
at each secondary (lines 19-20).

The middleware needs to be able to track the commit order at the primary in order to enforce
the same order on the secondaries. This implies submitting commit requests sequentially to the
primary and appending the writesets to the queues in this order. This can be achieved by putting
these tasks into a critical section. If update transactions were not committed sequentially, inconsistent
snapshots could become visible as discussed in Section 7.1.2. Note that different secondaries can
apply the writesets at different speed.

In principle, an update transaction goes through three phases. In the local phase, the transaction
executes at the primary. When the client submits the commit request, the validation phase starts.The
middleware extracts the writeset and submits the commit at the primary which performs validation
and terminates the transaction accordingly. If commit was successful, the application phase applies
the writeset at the secondaries.

7.2.2 EXAMPLE EXECUTION
In all examples of this chapter, there are three update transactions T1 to T3. T1 and T3 write x, and
T2 writes y. There are two read-only transactions. T4 first reads y and then x. T5 reads x and then y.
The transactions are depicted in Figure 7.4. The numbers before the individual operations indicate
the order in which the clients submit these operations. Basically, the first operations of T1 to T4 are
submitted, then the commit request of T1, then the first operation of T5 followed by the commit
requests of T2 and T3. Finally, the remaining operations of T4 and then the remaining operations of
T5 are submitted. We assume a transaction T0 has created initial versions of x and y.

The execution is depicted in Figure 7.5. The middleware receives all operations from the
clients. It sends the write operations of T1 to T3 to the primary, which executes them locally creating

7.2. PRIMARY COPY – CENTRALIZED MIDDLEWARE 73

Upon: receiving operation of transaction Ti from a client
1: if this is the first operation of Ti then
2: if Ti is read-only then
3: assign a secondary to Ti

4: else
5: assign primary to Ti

6: submit the operation to the assigned replica
7: wait for response and return it to client

Upon: receiving commit request of transaction Ti

8: if Ti is read-only then
9: commit at assigned secondary

10: return confirmation to client
11: else
12: extract Ti ’s writeset WSi from primary
13: commit Ti at primary
14: if ok returned then
15: append WSi to writeset queues of all secondaries
16: return confirmation to client
17: else
18: return abort to client

Upon: WSi is first in writeset queue of secondary S

19: Apply WSi at S and remove from queue
20: commit at S

Figure 7.3: SI primary copy protocol

Figure 7.4: Transactions in example executions

new versions for each operation. The read requests of T4 are sent to the secondary 1. The read
operation on y returns version y0, assuming that an initial transaction T0 has created this version.
T1 is the first that wants to commit. The middleware first retrieves the writeset and then commits
the transaction at the primary. The commit succeeds and the middleware applies the writeset at the
secondaries. Now T5 submits its first read operation, and the middleware forwards it to secondary

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-025.jpg&w=211&h=60

74 7. 1-COPY-SNAPSHOT ISOLATION

Figure 7.5: Example execution of SI primary copy

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-026.jpg&w=267&h=473

7.2. PRIMARY COPY – CENTRALIZED MIDDLEWARE 75

2. As T1 has already committed at this secondary when T5 starts, T5 reads the version x1 created by
T1. When T2 submits the commit, the middleware retrieves the writeset, commits T2 at the primary
and applies the writesets at the secondaries. Although T1 and T2 are concurrent, they do not conflict,
therefore T2 commits. When T3 submits the commit, the middleware retrieves the writeset, but
the commit fails at the primary. The primary database determines that T1 is concurrent to T3 and
conflicts; therefore, T3 is aborted. The middleware, therefore, does not apply the writeset at the
secondaries. The read operation r4(x) of T4 executes at secondary 1. It does not read the update by
T1 but the original version x0 as T4 and T1 are concurrent. Similarly, when the second operation of
T5 executes at secondary 2, it does not read the version created by T2 as T5 and T2 are concurrent at
secondary 2.

7.2.3 ALGORITHM PROPERTIES
1-copy-snapshot isolation. 1-copy-snapshot isolation is attained because of two mechanisms. First,
all update transactions are executed at the primary that enforces SI locally. Second, update transac-
tions are committed sequentially at the primary and writesets are applied sequentially in the same
commit order at the secondaries.

Committing all update transactions in the same order at all replicas (primary and secondaries)
is an important feature. In the example of Figure 7.5, T1 and T2 do not conflict; therefore, one might
want to allow them to commit in different order at the secondaries, e.g., T2 before T1 at secondary 1,
and T1 before T2 at secondary 2. Then, however, it could be possible that T4 at secondary 1 reads the
update of T1 but not the update of T2 while T5 at secondary 2 reads, as in the current example, the
update of T1 but not the one of T2. No 1-copy-schedule could observe both snapshots, and the union
of the local serialization graphs would have a cycle that has no consecutive rw-edges.Therefore, this
and all the following protocols ensure that transactions commit in the same order at all replicas.

With this, the three properties of 1-copy-SI are fulfilled. Property (i) is fulfilled because the
underlying database replicas use SI. Property (ii) requires all replicas to commit the same update
transactions. By executing the writesets of transactions that committed at the primary sequentially at
the secondaries, there are no write/write conflicts at the secondaries, and thus, no aborts. Therefore,
the secondaries commit the same transactions as the primary. The equivalent 1-copy schedule can
be produced by using the local schedule of the primary for update transactions. This also reflects the
sequence of snapshots that are produced at the secondaries.Therefore, any read-only transaction has
seen one of these snapshots and can be ordered accordingly. In the example of Figure 7.5, T4 reads
a snapshot where only T0 was committed, and T5 reads a snapshot where T1 was committed but not
yet T2.

1-copy-atomicity in the failure-free case. 1-copy-atomicity in the failure free case is automatically
provided as 1-copy-SI already requires all replicas to commit the same set of update transactions.

1-copy-atomicity in the failure case. We distinguish between failure of the middleware, failure of
the primary, and failure of a secondary.

76 7. 1-COPY-SNAPSHOT ISOLATION

• If a secondary fails, the read-only transactions active on this secondary are considered aborted.

• If the primary fails, there are several transaction states to consider. (a) If the middleware has
already received a commit confirmation from the primary, it also has the writeset, and thus,
will apply it at all secondaries and the transaction commits at all replicas. (b) A transaction for
which the middleware has not yet sent the commit request to the primary can be considered
aborted. For both (a) and (b), the client should be informed about the respective outcome.
If the middleware had sent a commit for a transaction T to the primary but the primary
crashed before returning the confirmation, the primary might or might not have committed T .
Although the middleware has already the writeset, it should not be applied at the secondaries,
as the middleware cannot know whether validation succeeded or not.The transaction should be
considered aborted and the client informed accordingly. This might violate 1-copy-atomicity
if the primary committed the transaction. But this situation is acceptable as the client sees
the abort, which is the decision within the available system, and the primary can roll back the
changes at the time it recovers. However, 1-copy-durability becomes harder to enforce, since
redo will not be sufficient to recover the primary, since such a transaction would need to be
undone.

• If the middleware fails, 1-copy-atomicity is easily violated. As it applies writesets lazily, sec-
ondaries might have applied different subsets of writesets. It might even be the case that the
primary committed a transaction and no secondary has the writeset applied.

Replicated centralized middleware. In order to handle failure of the middleware, a middleware
backup is needed. Sending writesets to the backup middleware and committing the transaction at
the primary must be coordinated in an atomic fashion so that if the main middleware fails either the
transaction committed and the backup has the writeset, or the transaction was not yet committed
(and thus, will be aborted by the primary when it detects the middleware failure) and the backup
does not have the writeset. The backup middleware must also have the means to determine whether
for a given transaction, a secondary has already applied a writeset or not. Doing this properly can be
quite tricky. We discuss a solution in Section 9.1.

7.3 UPDATE ANYWHERE – CENTRALIZED MIDDLEWARE

In this section, we present a protocol that avoids the bottleneck of a primary replica by resorting to
update anywhere. Thus, all replicas share the update workload. However, it still uses a centralized
middleware. Moving to update anywhere, the middleware needs to perform part of the concurrency
control in order to isolate transactions that execute on different replicas. In particular, the validation
of transactions is now performed by the middleware. As this is done at the end of the transaction
and only requires access to the write operations, this is a fairly simple task, as the middleware has
access to the writeset.

7.3. UPDATE ANYWHERE – CENTRALIZED MIDDLEWARE 77

7.3.1 PROTOCOL
The protocol at the middleware is depicted in Figure 7.6.We can again distinguish several phases.The
local phase executes a transaction locally at one of the replicas. In the validation phase, the middleware
extracts the writeset and validates the transaction. If validation is successful, the application phase
applies the writeset at the remote replicas. Each replica commits the transaction individually, once
the writeset is applied locally.

The middleware keeps several variables. The variable lastvalidated is a counter of validated
update transactions.The variable lastcommitted[j] keeps track of how many update transactions have
already committed at replica Rj . Finally, validatedSet keeps track of previously validated transactions
in order to perform validation. In the protocol description, this set is never garbage collected, but in a
real implementation, transactions would be removed from this set as soon as there are no transactions
that are concurrent to them.

The middleware assigns each transaction Ti a start timestamp Ti.startT S and a commit
timestamp Ti.commitT S. Whenever a transaction Ti is successfully validated at the end of exe-
cution, it receives the current value of lastvalidated as commit timestamp (Ti.commmitT S :=
lastvalidated). When a transaction Ti , starts at replica Rj , it receives as start timestamp
lastcommitted[j], that is, the commit timestamp of the last update transaction that committed
at Rj (Ti.startT S := lastcommitted[j]). This helps the middleware to determine which trans-
actions are concurrent. Ti is concurrent to Tj if Ti.startT S < Tj .commitT S and Tj .startT S <

Ti.commitT S.
Let us now have a look at the individual execution steps of a transaction.

Local phase. When the middleware receives the first operation of a transaction Ti , it selects
a replica Rj at which Ti is local (lines 4-6). By submitting the operation to Rj , the corresponding
transaction starts at Rj . It also assigns Ti a start timestamp that reflects the commit timestamp of
the transaction that was the last to commit at Rj . Otherwise, read and write operation are simply
executed by the assigned replica, and their results returned to the client (lines 7-8). This part of the
protocol covers the local phase.

Validation phase. A commit request triggers the validation phase. If the transaction is read-only,
it can simply commit (lines 9-11). Note that it is easy for the middleware to determine whether a
transaction is read-only at the end of execution as it has seen all statements (e.g., only SQL select
statements). If it is an update transaction, the writeset is extracted (line 13).The middleware performs
the validation of the update transaction checking that there was no previously validated transaction
Tj that was concurrent and had a write conflict (line 14). Note that Tj might not have committed at
all replicas. What counts is that it was validated before Ti . If a transaction does not pass validation,
it is simply aborted at the local replica (lines 15-16). If validation passes successfully, the transaction
receives its commit timestamp. The transaction is added to the list of validated transactions and
appended to the writeset queues of all replicas in FIFO order (lines 18-21).

Application phase. When a writeset is the first in the queue of a remote replica (lines 22-28),
the writeset is applied and the transaction then committed. At the local replica, the transaction

78 7. 1-COPY-SNAPSHOT ISOLATION

Upon: Initialization
1: lastvalidated:= 0
2: lastcommitted[j]:= 0, for j=1...N
3: validatedSet:= ∅

Upon: receiving operation of transaction Ti from a client
4: if this is the first operation of Ti then
5: Ti .replica:= select an available replica Rj

6: Ti .startTS:=lastcommitted[j]
7: submit the operation to Ti .replica and wait for response
8: return to client

Upon: receiving commit request for Ti from a client
9: if Ti read-only then

10: commit Ti at Ti .replica
11: return confirmation to client
12: else
13: Extract Ti ’s writeset Ti.WS from Ti .replica
14: if ∃Tj ∈ validateSet : (Ti .startT S < Tj .commitT S) ∧ (Ti .WS ∩ Tj .WS �= ∅) then
15: abort Ti at Ti .replica
16: send abort notification to client
17: else
18: lastvalidated++
19: Ti .commitTS:= lastvalidated
20: append Ti to validateSet
21: append Ti to writeset queue of each replica

Upon: Ti is first in writeset queue of replica Rj

22: if Ti.replica �= Rj then
23: apply Ti.WS at Rj

24: commit Ti at Rj

25: lastcommitted[j]++
26: remove Ti from writeset queue of Rj

27: if Ti .replica = Rj then
28: return confirmation to client

Figure 7.6: SI update anywhere protocol with centralized middleware

7.3. UPDATE ANYWHERE – CENTRALIZED MIDDLEWARE 79

can immediately commit as it was already completely executed. For each replica, the middleware
keeps track of the number of committed transactions in order to synchronize with the start of new
transactions.

Note that validation of writesets cannot be done concurrently in order to guarantee a global
order of validation. Also, while a new transaction Ti is started at a replica Rj when the first operation
is submitted (lines 4-6), no transaction should commit at this replica (lines 24-25) so that the
middleware can be sure which transactions really committed before Ti started. Such behavior can
be easily achieved by setting appropriate mutex locks.

7.3.2 EXAMPLE EXECUTION
The example uses the same five transactions as depicted in Figure 7.4.Figure 7.7 shows the execution.
We omit the interaction between clients and middleware in order to simplify the figure. We assume
two replicas RA and RB . T1, T2 and T5 are executed at replica RA, and T3 and T4 at RB . We assume
that a transaction T0 created initial versions of all data items and received 0 as commit timestamp.
Thus, lastvalidated = 0 initially. When receiving the first operation of T1, the middleware assigns
T1 to RA and sets the start timestamp to 0 (the commit timestamp of T0) before submitting the
write operation to RA. T2 and T3 are assigned to RB , and T4 to RA. All receive a start timestamp of
0, and their operations are submitted to the respective replicas. As all have the same start timestamp,
it is clear that they are all concurrent. T1 is the first to request the commit. The middleware receives
the writeset and performs validation. As validation succeeds, T1 receives 1 as commit timestamp.
At RA the transaction is simply committed. The middleware also keeps track of the fact that T1 is
committed at RA (lastcom[A] = 1). At RB the writeset is applied and T1 committed. When the
first operation of T5 is submitted, the transaction is assigned to RA. As RA has already committed
transaction T1 with a commit timestamp of 1, T5 receives this as a start timestamp, and it reads
the version x1 written by T1. At commit of T2, the middleware receives T2’s writeset from RA,
validates T2 and assigns it a commit timestamp of 2. Validation succeeds because T1 and T2 do not
conflict. However, the validation of T3 fails. The middleware can detect that T3 is concurrent to
T1 (T3.startT S < T1.commitT S), and they have a conflict. The middleware aborts T3 at replica
RB . When T4 performs its last read, RB returns the original version x0 as T1 and as T1 and T4 are
concurrent at RA. T4 can commit without validation. Similar, T5 reads the original version y0 of y

as it is concurrent to T2 at RA, and it can commit without validation.

7.3.3 ALGORITHM PROPERTIES
1-copy-snapshot-isolation. We only briefly discuss why all three properties of 1-copy-SI are pro-
vided. Obviously, all local schedules are SI as we assume the underlying databases use SI. Showing
that all replicas commit the same transactions is not that obvious. We have to show that if the
middleware decides to commit a transaction, the commit actually succeeds at all replicas. The clue
is that the middleware keeps exact track of all concurrent transactions, and validation fails if there
is any conflict with a concurrent, already validated transaction. Thus, once validation succeeds, the

80 7. 1-COPY-SNAPSHOT ISOLATION

Figure 7.7: Example execution of SI update anywhere with centralized middleware

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-027.jpg&w=225&h=442

7.4. UPDATE-ANYWHERE – DECENTRALIZED MIDDLEWARE 81

database will not find any further conflicts, and also commit the transaction. For property (iii), we
use again the fact that all update transactions are committed in the same order at all replicas. Thus,
this order can serve as guideline to build the 1-copy-schedule for the update transactions. Finally,
as all replicas go through the same sequence of snapshots, read-only transactions can be ordered
according to the snapshot they access.

In summary, use two main mechanisms to enforce the 1-copy-SI properties. First, we keep
track of concurrent transactions and perform validation at a central point, the middleware. Second,
writesets are applied and transactions committed in the order in which they are validated by the
middleware.

1-copy-atomicity. The arguments for 1-copy-atomicity are similar to Section 7.2.
• Atomicity in the failure free case is given because of 1-copy-SI.

• Failures of database replicas are simple to handle. If the transaction has already received the
writeset of a transaction local to the failed replica, it will commit or abort in the remaining
system according to the validation, and 1-copy-atomicity is provided. If the middleware has not
yet retrieved the writeset, it can be considered aborted in the entire system, again guaranteeing
1-copy-atomicity.

• If the middleware fails, 1-copy-atomicity is easily violated. If a backup middleware is used,
it has to receive writesets before they are applied at any replica, and also have appropriate
information about the data structures maintained at the main middleware to continue validation.
Furthermore, it must have the means to determine for each of the writesets it received, whether
the corresponding transaction has already committed at a replica or the writeset has to still be
applied. How this can be achieved is discussed in Section 9.1.

7.4 UPDATE-ANYWHERE – DECENTRALIZED
MIDDLEWARE

In this section, we present a protocol that uses a decentralized middleware. In fact, the protocol of
the previous section can be adjusted quite easily to follow a decentralized approach. We can take
advantage of multicast primitives for the communication among replicas in order to support 1-copy-
isolation and 1-copy-atomicity. Having a decentralized middleware avoids the complex failover of
a replicated centralized middleware.

Each replica consists of a middleware and a database replica building a replication unit. Clients
connect to any middleware replica.The middleware replica to which a client connects to becomes its
local replica. The client interface remains the same. They can submit their read and write operations
in the usual way.

The central middleware in the protocol of the previous section performed two roles, one was
transaction validator, i.e., checking whether concurrent transactions had write/write conflicts, and
the other was validation sequencer, i.e., determining the order in which transactions are validated.
In the role of transaction validator, it kept track of the formerly validated transactions and their

82 7. 1-COPY-SNAPSHOT ISOLATION

writesets and commit timestamps. Decentralizing this role means that each replica has to keep track
of this information and perform validation.

In the role of sequencer, the central middleware has determined the validation order by entering
a critical section. In a decentralized approach, coordination among the middleware replicas is needed
to determine a total validation order. The idea is to use a total order multicast for that purpose. As
the writesets have to be sent to all replicas, we use total order multicast for writeset dissemination.
As outlined in Section 4.5, total order multicast guarantees that the writesets are delivered at all
replicas in the same order, and we require the middleware replicas to perform validation in this order.
By validating transactions at all replicas in the same order, we can ensure that all make the same
decisions about commit or abort of transactions.

7.4.1 PROTOCOL DESCRIPTION
The decentralized protocol can be found in Figure 7.8. It has the same phases as in the protocol of
the previous section.

Local phase. The client submits its transactions to any of the middleware replicas. Replica
discovery, as discussed in Section 4.4, enables the client to find an available replica. With the first
operation, a transaction receives its start timestamp (lines 3-4), and all read and write operations are
executed at the local replica (lines 5-6). This concludes the local phase.

Validation phase. When the client submits the commit request the validation phase starts. A
read-only transaction can commit immediately (lines 7-9). For update transactions, the transaction
(including its writeset) is multicast in total order to all replicas (lines 11-12). Upon the delivery of
the writeset, each replica performs the validation against previously validated transactions that were
concurrent to the one being validated (line 13). If unsuccessful, the transaction is aborted at the local
database (lines 14-16). If successful, the application phase starts.

Application phase. A remote replica first applies the writeset and then commits the transactions
(lines 18-20). At the local replica, the transaction can immediately commit (line 20).The transaction
is assigned a new commit timestamp, and the transaction is recorded for future validations (line 23).
Finally, the local replica returns the confirmation to the client (lines 24-25).

The entire process after delivery of a writeset, i.e., validation, application of the writeset and
commit is performed in a critical section. This means all writesets are applied sequentially, and the
commit order reflects the validation order. Furthermore, starting a transaction (i.e., executing the
first operation of a transaction in lines 5-6) must be synchronized with committing transactions and
assigning commit timestamps (lines 20-22) to guarantee that the middleware has the correct start
timestamp for a transaction. This can be achieved by setting appropriate mutexes.

Compared to the centralized execution, each replica only keeps track of its own commit and
start timestamps. As validation and application phase are in a critical section, a single lastcommitted

counter is sufficient for timestamping purposes.

7.4. UPDATE-ANYWHERE – DECENTRALIZED MIDDLEWARE 83

Upon: Initialization
1: lastcommitted:=0
2: validateSet:= ∅

Upon: receiving operation of transaction Ti from a client
3: if this is the first operation of Ti then
4: Ti .startTS:=lastcommitted
5: submit the operation to local database replica
6: wait for response and return to client

Upon: receiving commit request for Ti from a client
7: if Ti is read-only then
8: commit at local database
9: return confirmation to client

10: else
11: Extract Ti ’s writeset WSi from local database
12: total_multicast Ti to all replicas

Upon: delivering transaction Ti in total order
13: if �Tj ∈ validateSet : (Ti .startT S < Tj .commitT S) ∧ (Ti .WS ∩ Tj .WS �= ∅) then
14: if transaction local then
15: abort Ti at local database
16: send abort notification to client
17: else
18: if transaction remote (from other replica) then
19: apply WSi at local database
20: commit Ti at local database
21: lastcommitted++
22: Ti .commitTS:= lastcommitted
23: append Ti to validateSet
24: if transaction local then
25: return confirmation to client

Figure 7.8: SI update anywhere protocol with decentralized middleware

7.4.2 EXAMPLE EXECUTION
The example uses the same five transactions as the previous examples. The execution at the two
middleware replicas and corresponding database replicas is shown in Figure 7.9. For simplicity, the
interaction between client and middleware replicas is omitted. We assume an initial transaction T0

with commit timestamp 0 that created versions of all data items.
Transactions T1, T2 and T5 are submitted to the middleware replica RA while T3 and T4

are submitted to the middleware replica RB . T1 to T4 receive 0 as start timestamp and execute

84 7. 1-COPY-SNAPSHOT ISOLATION

Figure 7.9: Example execution of SI update anywhere with decentralized middleware

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-028.jpg&w=339&h=480

7.4. UPDATE-ANYWHERE – DECENTRALIZED MIDDLEWARE 85

their operations locally. We show the execution at RA and RB as overlapping because a clear order
of operations cannot be determined if they execute on different replicas. When T1 submits the
commit request, the middleware of RB retrieves the writeset and multicasts it in total order to
all middleware replicas. Upon delivery, validation succeeds at both replicas, the middleware of RB

applies the writeset and both replicas commit the transaction. When T5 starts at RA, the middleware
assigns a start timestamp of 1 as T1 has already committed at the local database replica. T2 commits
in a similar way as T1. The writeset is multicast and validation succeeds at both replicas as T1 and
T2 do not conflict, and T2 commits at both replicas. In contrast, the validation of T3 fails. RA simple
discards the writeset while RB has to abort the transaction at the local database replica. T4 and T5

finish their last read operations and also commit. Both read the initial version x0 and y0, respectively,
as they read from a committed snapshot as of start time.

7.4.3 ALGORITHM PROPERTIES
1-copy-snapshot isolation. 1-copy-SI is achieved through three mechanisms. First, multicasting
writesets in total order and validating them upon delivery guarantees that validation of all update
transactions is performed in the same order at all replicas. Second, by validating update transactions
in the same order, all replicas adopt the same commit/abort decisions. Third, total order, multicast
also guarantees that update transactions are committed in the same order; at all replicas producing
the same sequence of snapshots at all replicas.

The reasoning for properties (i) and (iii) of 1-copy-SI is the same as in the protocol of the
previous section, and we omit it here. We only want to discuss the second property. All replicas
commit the same set of update transactions because of the total order delivery of writesets and
the resulting deterministic validation. Let us assume a simple example where T1 and T2 execute
concurrently at two replicas and both update x. Without total order, it would be possible that one
replica validates T1 before T2 and aborts T2 while the other validates T2 before T1, and thus, aborts
T1. The second property of 1-copy-SI would be violated. But with total order delivery, all validate
transactions in the same order; all abort the second transaction, which is the same at all replicas.The
reasoning that a transaction will commit in the database when its middleware replica has successfully
validated is again similar to the protocol of the previous section.

1-copy-atomicity. 1-copy-atomicity is trivially fulfilled in the failure-free case. Failures can be easily
handled if we use uniform reliable multicast. It guarantees that whenever a writeset is delivered at
any replica, it will be delivered at all available replicas, and thus, be processed by all. Therefore, if
the failed replica has committed a transaction before the failure, all available replicas will do the
same. A transaction that was local at the failed replica and whose writeset was not yet delivered was
still active at the local replica when it failed. It can be considered aborted at all replicas. Therefore,
1-copy-atomicity is provided.

86 7. 1-COPY-SNAPSHOT ISOLATION

7.5 SNAPSHOT ISOLATION VS. TRADITIONAL
OPTIMISTIC CONCURRENCY CONTROL

In this chapter, we assumed an implementation of snapshot isolation where conflicts between update
transactions are detected at the end of transactions. This is the mechanism that basically all replica
control protocols based on snapshot isolation use. Having a validation phase at the end of transaction
is an optimistic concurrency control mechanism. Traditionally, however, optimistic concurrency
control mechanisms were designed to provide serializability. The best known version is the Kung-
Robinson model [Kung and Robinson, 1981]. In a local phase, a transaction reads the last committed
version of a data item x, while write operations create versions that are only visible to the transaction
itself. At the end of transaction, a validation phase checks whether each of the read versions still
reflects the last committed version (i.e., there were no concurrent writes that are already validated).
If yes, the commit phase turns the data item versions created by the transaction into visible versions.
Otherwise, the transaction aborts, which simply means to discard its data item versions. As we have
described the protocol here, it requires performing the validation and commit phases in a critical
section.

In summary, most optimistic concurrency control mechanisms that provide serializability de-
termine conflicts by checking for overlaps between readsets and writesets of concurrent transactions.
Comparing this to the snapshot isolation implementation described in this chapter, the only dif-
ference is that snapshot isolation compares writesets against writesets. Therefore, the 1-copy-SI
protocols that we described in this chapter could be easily adjusted to an optimistic concurrency
control protocol providing 1-copy-serializability. The only major difference is that one has to collect
also the readset of a transaction. For example, in protocol of Figure 7.8, if we could retrieve at line
7 not only the writeset but also the readset, we could multicast both sets to all replicas. Validation
would then not check whether the writeset but whether the readset overlaps with the writeset of any
concurrent validated transaction, and abort if this were the case.

7.6 RELATED WORK

The first work that exploits snapshot isolation in a replicated environment is
Ganymed [Plattner and Alonso, 2004]. It uses a primary copy approach, and the primary
copy protocol presented in Section 7.2 is a simplified version of Ganymed.

Several update anywhere approaches were proposed shortly after. Postgres-
R(SI) [Wu and Kemme, 2005] integrates a replica control solution based on snapshot isolation into
the kernel of the PostgreSQL database system. Conceptually, the approach taken is similar to the
decentralized protocol described in Section 7.4.The version of PostgreSQL used for the work offers
snapshot isolation based on a multi-version system. Posgres-R(SI) extends the system to be able
to multicast writesets to all replicas using a total order multicast. Each replica performs validation.
Different to the approaches presented here, however, PostgreSQL uses a locking mechanism that

7.6. RELATED WORK 87

detects conflicts between writers during transaction execution and not at the end of transaction,
and the replica control protocol is adjusted to work with this mechanism.

Lin et al. [2005] presents middleware based replication protocols, and the protocols presented
here are variations of them. The difference is that the work described by Lin et al. [2005] uses
PostgreSQL as underlying database system, and as mentioned above, it uses locking to detect write
conflicts. This locking can lead to deadlocks between the replication logic and the database. This
paper was the first one to characterize 1-copy-SI and prove that the protocol was 1-copy-SI.

Krikellas et al. [2010] propose a centralized middleware based approach that achieves what
is named “strong consistency". After a transaction commits at any replica, a transaction that starts
at a different replica is delayed until the changes of the committed replica have been applied at that
replica. If the data items the transactions are going to access are known in advance, only the relevant
data items have to be brought up-to-date.

A formal framework for reasoning about 1-copy-SI in replicated protocols was proposed
by Lin et al. [2009]. Our discussion in Section 7.1.2 is derived from there. Generalized snapshot
isolation (GS) [Elnikety et al., 2005] is a relaxation of SI. GSI enables read-only transaction to start
on earlier snapshots than the current one. Daudjee and Salem [2006] propose different levels of
SI, similar to 1-copy-SI and the more relaxed GSI for lazy replication. The proposed primary copy
protocols forward updates automatically to the primary and enforce session consistency guaranteeing
that clients observe their own writes. A further formalism of snapshot isolation in a replicated
environment is introduced by Muñoz-Escoí et al. [2009].

Tashkent [Elnikety et al., 2006] uses GSI as correctness criteria and relies on a single valida-
tion component. Middleware replicas receive and execute transactions from clients. At the end of
transaction, validation is performed by sending the necessary information to the certification com-
ponent that decides on the validation order and performs validation. The validator can be replicated
for fault-tolerance purposes.

Mishima and Nakamura [2009] propose a primary-secondary approach based on GSI. Sec-
ondaries commit update transactions in the same order as the primary. As all primary-secondary
approaches, it assumes a priori knowledge about transactions being read-only or update transactions.

SI has also be analyzed in the context of partial replication [Bernabé-Gisbert et al., 2008;
Serrano et al., 2007]. The challenges are to perform validation although replicas do not have all
copies, and to provide transactions a single global snapshot if they access data copies on different
nodes.

Finally, SI has also been exploited in multi-tier systems using SI databases
[Perez-Sorrosal et al., 2007]. Interestingly enough, a regular J(2)EE application server when used
in combination with an SI database violates SI. The reason is that application servers cache data
from the database, but they have a single version cache.This means that if there are two transactions
requiring two different snapshots from the same data item that is cached at the application server,
only one of them might receive the right version of the item. Perez-Sorrosal et al. [2007] propose a
multi-version cache for the application server that provides end-to-end SI consistency. The authors

88 7. 1-COPY-SNAPSHOT ISOLATION

also present a protocol for replicating the multi-tier system by collocating an application server and a
database as a single replication unit and encapsulating the replication logic in the application server.

89

C H A P T E R 8

Lazy Replication
In this chapter, we have a closer look at lazy protocols. Lazy protocols execute transactions first
locally and only send the update information some time after commit. In primary copy approaches,
this means that the primary always has the current version of the data item while secondary copies
might be stale. In Section 8.1, we present mechanisms that quantify and bound the staleness that
can be observed at the secondaries. In Section 8.2, we discuss how lazy primary copy approaches
can be made more flexible by allowing the primary copies to be distributed across many replicas.
Section 8.3 is dedicated to lazy update anywhere approaches.The particular problem of this protocol
category is that transactions executing on different replicas can concurrently update the same data
items and all commit. We present mechanisms that allow the detection of such conflicts, and we
discuss strategies that resolve these conflicts in order to agree on a final value for the corresponding
data items.

8.1 BOUNDING THE STALENESS IN LAZY PRIMARY COPY

Section 3.2 presented a lazy primary copy replica control algorithm where read-only transactions
can be submitted to any replica and execute completely locally at this replica. An update transaction
executes and commits first at the primary. Only “some time after the commit" the changes of
transactions are propagated to the secondary replicas. At the secondaries, the changes are applied
in the order in which they committed at the primary. The protocol provides 1-copy-serializability,
but read-only transactions on the secondaries might read stale data. How stale, is not defined, and
readers at the secondaries do not know how outdated the copies really are. In this section, we discuss
how the staleness of secondary copies can be bound.

The best one can do is to send the updates immediately after commit and apply them at the
remote replicas as soon as they arrive. In this situation, the maximum staleness is the time for the
update transfer. However, that can be costly, and it might not be needed if readers can live with staler
data. Therefore, many approaches provide more relaxed guarantees.

8.1.1 BOUNDARY TYPES
The main definitions to bound staleness are based on time, value, and update frequency.

• A system offers time-bound staleness with time limit t for a data item x if a secondary copy is
stale for at most t time units. This means that if a write operation w(x) setting x to a value a

occurs at the primary copy at time point T P , then at T P + t all secondary copies of x either

90 8. LAZY REPLICATION

have the value a or a value of a write operation that occurred after w(x). For instance, assume
a time bound of one hour for data item x. Further assume the primary copy of x is changed
from 0 to 1 at 14:20, and then at 14:40 it is set to 2. At 15:20 the latest, all secondary copies
should have either the value 1 (reflecting the first update) or 2 (already reflecting the second
update).

• A system offers value-based staleness if the values of the secondary copies never differ from the
value at the primary copy by more than a predefined threshold difference. Value-based staleness
limits the value drift between primary and secondary copy. Of course, such a bound is only
possible if a difference function is defined on the data type of the data item. The threshold
difference can be defined in absolute or percentage values. For instance, assume a data item
of type integer and an absolute value bound of 5. Further assume a data item x has the same
value 2 at all replicas, and then the primary copy is first changed to 4 and then to 8. At latest,
when the primary changes to 8, either the secondaries have the value 4 (reflecting the first
update) or 8 (reflecting both updates). As a second example, assume a percentage bound of
10% and the current value of data item x is 100 at all copies. A change to 105 will not require
any propagation, but once the value changes above 110 or below 90, propagation needs to be
triggered.

• A system offers update-based staleness if the updates missed by the secondaries are limited by
an update threshold. With an update threshold of 1, each update on the primary copy has to be
immediately propagated to the secondaries. With a threshold of 2, when the second update
occurs at the primary, the secondaries need to receive at least the first update.

8.1.2 BASIC IMPLEMENTATION
Staleness bounds have first been developed without the concept of transactions in mind. Instead,
they are defined on each data item individually, not taking into consideration that a transaction might
update several data items and that these updates should be considered a logical unit. Therefore, we
ignore transactions for now and purely focus on achieving the desired staleness level. This means
that update transactions execute and commit at the primary without any writeset being collected.
Instead, the primary simply keeps track of when data items are updated. When the staleness bound
of a data item is reached, the current value of the data item is propagated to the secondaries. We
discuss the impact on transactions in the next section. For all staleness types, the primary copy is
tagged with additional information that helps to decide when to propagate.

• Time-bound Staleness: Assume a data item x has a time-bound of t . Whenever the primary
copy of x is updated, and the primary copy is not yet tagged, it receives the current time T P1

as timestamp. If it is tagged, nothing extra is done. At time point T P1 + t , the current value
of the primary copy is propagated to the secondaries, and the primary copy is untagged.

As an example, assume all copies of x have the same value 0. Then, the primary copy of x is
changed from 0 to 1 at 14:20, and then at 14:40 it is set to 2. At the time of the first update,

8.1. BOUNDING THE STALENESS IN LAZY PRIMARY COPY 91

the primary copy is tagged with a timestamp 14:20. The second update finds a timestamp tag
and does not need to do anything special. At 15:20, the current value of the primary copy,
i.e., 2, is propagated to the secondaries, fulfilling the time-bound for both updates. After the
propagation the timestamp is removed, and a new one is only added with the next update.

• Value-based Staleness: The primary copy is tagged with the difference of its current value and
the values at the secondaries. Whenever the difference is larger than the threshold difference,
the primary propagates its current value to the secondaries.

For instance, assume a threshold difference of 5, and all copies of a data item x have the value 2.
Thus, the primary copy is tagged with the difference 0. When the primary copy is updated to
4, it is tagged with the difference 4 − 2 = 2. When a second update changes the primary to 8,
the difference changes to 6, triggering the propagation of the current value 8 to all secondaries.

• Update-based Staleness: The primary copy is tagged with the number of updates that the
secondaries miss. When all copies have incorporated the same updates, the tag is 0, and it
is incremented by 1 every time an update occurs. If the tag is equal to the update threshold,
the current value of the data item is propagated to the secondaries and the tag reset to 0. An
update threshold of 1 forces every update to be propagated.

An interesting aspect of this implementation is that not necessarily every single update is
propagated. The example illustrating time-bound staleness, for instance, updates data item x twice
within the time bound t , but only one transfer is necessary.

Several bounds per data item. It might be possible that every secondary has a different bound
for a given data item. For instance, if there are copies in the same local area network and in remote
networks, one might want to keep the local secondary as consistent as possible as update propagation
is cheap, while the remote secondaries have a looser bound. This can be implemented by keeping at
the primary a tag per secondary copy.

8.1.3 PUSH VS. PULL BASED REFRESH
What we have described so far is push-based update propagation, as the primary pushes the changes
to the secondaries whenever the bounds are reached. Push-based approaches are by far the most
common for replication. A pull-based approach is also possible. In this case, the secondaries ask the
primary for a new version of the data item instead of the primary actively pushing it. A pull-based
approach might be interesting if the secondary copy is rarely accessed, i.e., there are much fewer
reads on the secondary copy than there are writes on the primary. Pulling is frequently used in
caching approaches when a time-based staleness bound has to be guaranteed. A secondary copy
has the timestamp T P1 of when it was propagated from the primary copy. As long as the current
time is less than T P1 plus the time-boundary t , the local copy is guaranteed to fulfill the bound. At
T P1 + t or some time after (e.g., when a request for the data item arrives), the secondary makes a
pull-request to the primary to see whether the primary copy has changed. If the primary returns a

92 8. LAZY REPLICATION

negative answer, the timestamp of the secondary copy can be set to the current time, and it is valid
for at least another t units. Otherwise, the primary can send the new value to the secondary. Further
optimizations are possible. Value- and update-based staleness limits cannot be achieved with such a
pull-based approach as the secondary has no means to know how often the primary copy is changed,
or to what value it is set.

8.1.4 MATERIALIZED VIEWS
Lazy primary copy replication has similarities with materialized views. A materialized view reflects
the results of a query (e.g., an SQL query) that is possibly defined over several tables. The results are
not computed every time the view is called, but the query is executed once and the result stored as
materialized view. Thus, a materialized view is a read-only copy of the original data, but it does not
have the same schema as the base data. Most commercial systems offer such functionality. When
the base tables change, the materialized view has to be updated. This can be done by reexecuting the
complete query, which is often necessary when the query is complex and covers more than one table.
For rather simple queries, it is possible to incrementally update the view as changes to individual
records occur.

8.1.5 TRANSACTION PROPAGATION
We already mentioned that the implementations presented so far ignore transactions. Transactions
can update several data items. It is now possible that each data item has a different bound, leading
to different propagation times, and thus, to possible non-serializable reads at the secondaries. For
instance, assume a transaction updates both x and y, the change on x is propagated at time T P1

and the change on y at T P2 > T P1. If a read-only transaction reads x and y at a time T P3, T P1 <

T P3 < T P2, then execution is no longer serializable as it sees the update on x but not the update
on y. A possible solution is to take the minimum bound on any of the data items to propagate all
data items that were changed by a transaction. That means, whenever a data item is updated, the
system keeps track of the transaction performing the update. Then, when the new value of a data
item is scheduled to be propagated, all other data items that were updated by that transaction are
also propagated. Note that this can have a cascading affect. For instance, transaction T1 updates x

and y, and T2 later updates y and z. Propagating x requires propagating y, but as the last change on
y was done by T2, it requires propagating z, too. Such a scheme can become complex and requires
the calculation of a transitive closure.

Therefore, some approaches do not require a completely consistent snapshot at the secon-
daries. Instead, they guarantee a maximum drift between the different data items. For instance, if
a transaction reads both x and y, a drift limit of 1 second provides the guarantee that the versions
read are within 1 second of each other.

Alternatively and in order to provide serializable execution for read-only transactions on sec-
ondaries, many systems propagate updates on a transaction basis similar to what we have described
in Section 3.2. Figure 8.1 presents the protocol in simplified form focusing on the writeset propaga-

8.1. BOUNDING THE STALENESS IN LAZY PRIMARY COPY 93

Upon: ri(x) for local transaction Ti

1: execute operation locally
Upon: wi(x) for local transaction Ti {only allow at primary replica}

2: execute operation locally
3: collect in writeset WSi

Upon: commit request for local transaction Ti

4: commit Ti

5: enqueue non-empty WSi in writeset FIFO queue Q

Upon: staleness bound for data item x reached
6: let WSi be writeset so that, if applied at secondary, staleness bound is recovered
7: send all writesets in Q up to WSi in FIFO order to secondary replicas

Upon: receiving writeset WSi from primary
8: apply writeset in receiving order

Figure 8.1: Bounded update propagation

tion. During transaction execution, a writeset is collected (lines 2-3). At commit time, the writeset
is queued (lines 4-5). In order to allow for different staleness bounds, the propagation itself might
be delayed depending on the staleness limits (lines 6-7), but it is on a transaction basis.The staleness
limits only determine the latest time point a writeset has to be propagated. That is, if a data item
is updated several times within the defined staleness bound, not only the final value, but each indi-
vidual update is propagated to the secondaries. The writesets are applied at the secondaries in the
order the transactions committed at the primary (line 8) guaranteeing that read-only transactions at
secondaries read from a transaction consistent snapshot.

For instance, if a data item x has a time bound t , we can tag a writeset containing x with t and
the time T P1 at which the writeset was produced. The writeset then needs to be propagated at the
latest at T P1 + t . As another example, assume a data item x has value-based staleness with threshold
difference of 5. If x is first changed from 2 to 4, and then later to 8, the writeset containing the first
update has to be sent the latest after the second update has executed at the primary (guaranteeing
that the difference between secondary and primary is 8 − 4 < 5). If x changes from 2 directly to 8,
then this update has to be propagated immediately. Finally, for update-based staleness, whenever a
secondary misses more than the predefined threshold of updates, the writeset with the oldest update
has to be propagated.

Of course, if updates are propagated in form of writesets and applied in commit order, it is
quite likely that updates are sent ahead of time. For example, assume a transaction updates x and y,
and x has a time-bound staleness of 1 hour, while y has one of 2 hours. The writeset will be sent the
latest one hour after the transaction commits due to the bound on x. Thus, for y the update arrives
well ahead of time.

94 8. LAZY REPLICATION

Figure 8.2: Multiple replicas with primary copies

8.2 MULTIPLE PRIMARIES
Having a single node that has the primary copies of all data items can lead to a bottleneck for
update transactions. Furthermore, clients that are remote to this primary experience long response
times for all of their update transactions. Having multiple primary nodes can alleviate this problem.
Often, a database can be partitioned by regions (e.g., all clients from a certain region and the related
data belong to one partition). Clients that belong to a certain region typically access more often
the data that can be associated to that region rather than to other regions. For instance, taking the
puppet store from the introduction, assume that the store has warehouses in many regions, and the
company installs a replica of its database at each of these warehouses. Clients will connect to the local
warehouse of their regions. They will mainly access their own client information and the pricing
and stock information of their particular warehouse. They might, however, also access globally valid
data, such as general product information, etc. Thus, the idea is that the replica residing in a region
hosts the primary copies for the corresponding partition. With this, clients have close access to the
primary copies of the data they are most interested in, resulting in faster update transactions. This
scenario is depicted in Figure 8.2. The database is partitioned into partitions P 1, P 2, P 3, and the
primary copies of these partitions are depicted in bold.

Transaction execution. Read-only transactions can be submitted to any replica and execute locally.
Update transactions can read any data item but are only allowed to update data items that belong

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-029.jpg&w=169&h=225

8.2. MULTIPLE PRIMARIES 95

Figure 8.3: Unserializable execution with multiple primaries

to a single partition. Updates across two partitions are not possible because two different replicas
hold their primary copies. Thus, the choice of partitions needs to be well adjusted according to
the different transaction types that exist in the application. Ideally, most update transactions for
a partition are submitted by clients that are local to the primary copy of the partition, avoiding
communication across wide area links.

Primary copy placement and serializability. Using multiple primary nodes seems a straightforward
extension to a single primary replica, and it has its obvious advantages in a wide area setting. In
regard to consistency, however, some subtle issues arise. In particular, 1-copy-serializability is no
longer provided, even if the replication protocol follows the description in Section 3.2, where all
updates of a transaction are sent in a single writeset and applied at the secondaries as an atomic unit.
Let us look at a simple example as depicted in Figure 8.3. Assume a database consisting of two data
items x and y where x ’s primary copy resides on replica RA, and y ’s primary copy is on replica RB .
Now assume a transaction T1 executes at RA updating x. The change is propagated to RB and RC .
At RB , T2 reads the freshly updated x, writes y, and commits. The change is propagated to RA and
RC . At RC , T2’s update arrives first and is applied. Then a transaction T3 reads the new value of y

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-030.jpg&w=226&h=261

96 8. LAZY REPLICATION

but still the old value of x as T1’s update arrives late. At RB , the serialization graph is T1 → T2, as T2

reads T1’s update. At RC , the serialization graph is T2 → T3 → T1, due to the read-dependencies
of T3. Taking the union of both graphs, we have a cycle T1 → T2 → T3 → T1. The problem is that
T2’s update depends on an update of T1, but T3 only sees one of the two updates.

One has to note that this is a very specific example, and in many cases, such situations might
never arise. However, this example also shows quite nicely that seemingly straightforward techniques
such as distributing primary copies can have subtle implications for the correctness of algorithms. In
fact, providing 1-copy-serializability in multi-primary environments is not straightforward. Some
solutions restrict the placement of primary and secondary copies; others introduce complex coordi-
nation algorithms to achieve serializability. We do not discuss them in detail here but only point to
some of them in the related work section.

8.3 LAZY UPDATE ANYWHERE

Lazy update anywhere allows any copy of a data item to be updated. As transactions first commit
locally without coordination with other replicas, concurrent updates of two copies of the same
data item can only be detected and resolved after transaction commit. Detecting such conflicts and
resolving them are challenging. This section outlines how it can be addressed.

8.3.1 DISTRIBUTED VS. CENTRAL CONFLICT MANAGEMENT
Section 3.2 presents a lazy update anywhere protocol with distributed conflict management, as every
replica detects and resolves conflicts locally. However, it can also be done in a centralized fashion.
In a centralized architecture, there is only one node or replica that detects and resolves conflicts and
tells the others what to do. This architecture is often chosen if there is a special node that has a
more central role in the replication architecture. For instance, there is one central database and the
other replicas exist, e.g., on mobile or personal computers, that could be easily disconnected. In this
environment, a primary copy approach is not suitable, as communication to the primary might be
slow or not available at all, hindering the execution of update transactions. In contrast, an update
anywhere approach allows all update transactions to be local. Nevertheless, the central unit can
be given the authority of conflict detection and resolution, and probably also update propagation.
The idea is that a replica sends changes only to the central unit and not to all replicas. The central
unit checks for possible conflicts and resolves them if necessary. It then propagates all successfully
executed changes to the other replicas, which can apply them blindly.

Having a single authority simplifies conflict resolution as it automatically guarantees deter-
minism. In contrast, with distributed conflict management every replica receives all updates indepen-
dently and has to locally detect and resolve the conflicts. As replicas receive updates from different
nodes possibly in different order neither conflict detection nor deterministic resolution are trivial.

8.3. LAZY UPDATE ANYWHERE 97

8.3.2 CONFLICT DETECTION
Three types of conflicts can occur. A uniqueness conflict happens when two inserts attempt to insert
a data item with the same unique identifier (i.e., the same primary key in SQL). An update conflict
happens when two concurrent transactions update the same data item. A delete conflict happens when
one transaction deletes a data item that another transaction updates or deletes.

Conflict detection with central conflict management. With central conflict management, conflict
detection is quite easy. Whenever the central unit updates its copy of a data item, it receives a new
version, and that version number is propagated together with the changed value. When another
replica applies this change to its local copy, it also keeps track of the version number. When a replica
now sends a new change to the central unit, it tags it with the current version of the copy that it has
locally. At the central unit, upon receiving such an update, it compares the version of the received
update with the version of its local copy. If they are the same, then no other replica has concurrently
updated that data item yet, and there is no conflict. The update is applied and a new version is
created. But if the local version is larger than the piggybacked version, another replica has updated
the data item and that update was received earlier by the central unit. Conflict resolution is triggered.
If the value of the data item changes due to the resolution (see next section), a new version number
is created for the item.

Conflict detection with distributed conflict management. Such simple version numbers cannot be
used with distributed conflict management because each replica needs to create versions locally
making it difficult to have globally coherent versions. For instance, assume a transaction updates
x at replica RA, and another transaction updates x at replica RB . If each replica has version 100
before the execution, the version will be 101 at both replicas after the execution. Conflict detection
and resolution at both replicas has to establish deterministically the correct version after resolution
is completed. Will it be 101 or maybe 102? If more than two concurrent transactions exist, globally
correct version numbers quickly become difficult to achieve.

A common approach to versioning updates in a distributed system is the use of version vectors1.
Version vectors are similar in concept to vector clocks [Mattern, 1989]. A version vector for a data
item contains a version entry for each replica in the system. The copy of the data item at replica
Ri is tagged with version vector Vi . The entries of the vector reflect the versions that are already
incorporated in the copy. When a replica Ri updates its copy, it increases its own version entry Vi[i].
Not only the update itself but also the corresponding version vector is included in the writeset.
When another replica Rj receives an update from replica Ri , it can detect whether there was any
concurrent update by comparing the version vector Vi included in the writeset with its local version
vector Vj for that data item. If Vi[i] = Vj [i] + 1 and for all other k, k �= i, Vi[k] = Vj [k], then
there is no conflict. If for some k �= i, Vi[k] > Vj [k], the replica Rj is missing some updates that Ri

has already seen. It can delay Ri ’s update until it receives these missing updates. If, however, there

1In general, vectors are very common to relate and order events in a distributed system.

98 8. LAZY REPLICATION

Figure 8.4: Distributed conflict detection with version vectors

is some k �= i such that Vi[k] < Vj [k], then there is a conflict between transactions on Ri and Rk .
Conflict resolution is needed.

Figure 8.4 shows an example with replicas RA, RB and RC . All copies of data item x have
version vectors (0,0,0). At RA and RC , T1 and T2 concurrently update x, leading to version vectors
VA = (1, 0, 0) and VC = (0, 0, 1). When RA receives T2’s update a conflict is detected as VC[1] <

VA[1], i.e., the update from T1 was not yet incorporated in the copy of RC when T2’s update at RC

occurred. At RC , the conflict is detected in a similar way when the update from T1 arrives. Now
assume that at RB , T1’s update arrives first. No conflict is detected as VA[1] = VB [1] + 1, and all
other entries are the same. The update is applied and VB set to (1, 0, 0). When now T2’s update
arrives, the conflict is detected in the same way as at RA.

From a conceptual point of view, version vectors are a very powerful and elegant tool. The
problem with version vectors is that the size can become quite large if there are many replicas in
the system. Having such a large version vector for each data item in the system quickly becomes
unfeasible. Also, if replicas can join and leave dynamically, vector maintenance is a challenge.

In fact, many commercial systems do not use any versioning at all. Instead, they send with
each update on data item x, both the before- and after-image of x. Instead of using version numbers
to detect conflicts, the before-image sent in a write-set message is compared with the current value

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-031.jpg&w=282&h=236

8.3. LAZY UPDATE ANYWHERE 99

of the data item. If they are the same, no concurrent updates are assumed. If they are different, a
conflict is detected.

8.3.3 CONFLICT RESOLUTION
Once conflict detection has determined that two transactions updated concurrently the same data
item, conflict resolution has to determine a final value for the data item. The final goal is eventual
consistency as defined in Section 2.8.The idea is that all copies of a data item will eventually converge
to the same value once no updates have occurred for a sufficiently long time. Of course, as long as
updates occur, it might always be the case that some of the copies are out of date. But once the
system is in a quiescent state, the copies should converge. Eventual consistency is not transaction
aware and looks at each data item individually. As a result, if two concurrent transactions T1 and T2

update x and y, it might happen that after conflict detection and resolution, x has the value written
by T1 and y has the value written by T2.

For update conflicts, there exist many resolution mechanisms. Some are general, others depend
on the data type.

1. General resolution mechanisms

• Discard. When a conflicting update arrives, it is simply discarded and the local value is not
changed. This mechanism provides eventual consistency only if there is a central conflict
detection and resolution unit. If resolution is done in a distributed fashion, copies will
quickly diverge. Just looking at the example of Figure 8.4, if replicas simply discard the
last update they receive, RA and RB will have T1’s update while RC will have T2’s update.
The copies differ after resolution.

• Overwrite. When a conflicting update arrives, it overwrites the local value. That is, over-
write is the opposite of discard, and again only provides eventual consistency with a central
resolution unit.

• Site priority. Each replica in the replicated system must be given a priority in advance.
The resolution method chooses the value of the replica with the highest priority. In the
example of Figure 8.4, assume RA has higher priority than RC . Then RA and RB will
discard the update from T2 as it originates from lower priority replica RC . In contrast, RC

will apply T1’s update because RA has higher priority. At the end, all copies have the value
of x written by T1. Interestingly, convergence is not guaranteed in all cases. In particular,
if detection is done using before- and after-images, and if propagation delays are frequent,
situations can arise where copies can diverge. We leave it to the interested reader to come
up with such an example.

• Value priority. Assuming there is a mechanism to give each possible value of the data item
a priority, then given the two values produced by two conflicting updates, the value with
the higher priority wins. For instance, if a data item can take the values ordered, produced,
shipped, delivered, then priorities ordered < produced < shipped < delivered could

100 8. LAZY REPLICATION

be assigned, as this reflects the order in which the values for this data item will typically
change.

• Timestamp priority. Each data item is tagged with a timestamp that could reflect the local
time when the update takes place. Ideally, the timestamp is so fine-grained that global
uniqueness is provided. In case of a conflict, the value with either the earliest or latest
timestamp can be taken, the other discarded. Section 3.2 discusses for the example in
Figure 3.6 largest timestamp as a possible resolution mechanism.

2. Data-type specific resolution mechanisms are mainly designed for numerical data types or
types that have a comparison operation.

• Minimum/maximum takes the smallest/largest value of conflicting updates.

• Additive assumes that the update itself is an addition or subtraction. For example, given a
data item x with current value 100, and transaction T1 on replica RA increases the value to
105 (basically adding 5), and T2 on replica RB increases it to 110 (adding 10). In principle,
these transactions are commutative. Thus, it is straightforward to come up with a final
solution that is equivalent to a serial execution. When T2’s update (with before-image 100
and after-image 110) arrives, and the local value of 105 is detected, then the final value is
set to the local value plus the after-image minus the before-image: 105 + (110-100). The
result is 115, which would also be the result if both transactions had executed serially, one
after the other. Note that as soon as several operation types are possible on the same data
item (e.g., multiplication and addition), such mechanism will not work anymore.

Uniqueness conflicts, where concurrent transactions insert data items with the same unique
identifier, can be either avoided or resolved. A first avoidance mechanism is to have an identifier
consisting of two values, a counter and a node identifier. Then each replica receives a unique node
identifier and can produce counter values that only need to be locally unique. The combination
of counter and node identifier is then globally unique. An alternative avoidance mechanism is to
regularly provide each replica a range of available identifier values. Each time a new data item is
created, the replica chooses one of the values assigned to it. The resolving mechanisms are a subset
of those for update resolution, such as discard, overwrite, site priority and earliest/latest timestamp.

Many commercial systems allow application programmers to provide specific resolution pro-
grams that can be plugged into the resolution module.When a conflict occurs, the resolution program
receives all available information (version numbers, current, before- and after-images) and can deploy
an application specific reconciliation strategy. As a final mechanism, the system can simply throw
an exception every time a conflict occurs and inform a management component. Further updates on
the data item will be disallowed until explicitly reactivated after manual reconciliation.

8.4. RELATED WORK 101

8.4 RELATED WORK

8.4.1 BOUNDING STALENESS
The discussion of relaxed consistency guarantees started with the development of the first repli-
cated databases [Alonso et al., 1990; Krishnakumar and Bernstein,1991; Pu and Leff,1991].Quasi-
copies [Alonso et al., 1990] discusses time-, value-, and update-bound staleness. Furthermore, they
introduce periodic-bound staleness which requires secondaries to be refreshed in regular time inter-
vals.They also discuss the problem of integrity constraint violations if updates on different data items
are propagated at different times. While such constraints (e.g., the sum of two data items may not be
below a certain value) always hold at the primary, due to missing updates at the secondaries, the con-
straint might be violated at the secondaries.The problem can be avoided by guaranteeing that changes
are propagated in the order they were committed at the primary. Epsilon-serializability [Pu and Leff,
1991] defines a limit per transaction instead of per data item. A transaction defines a single threshold
(e.g., update- or value-based) and then the sum of all staleness values over all data items read may
not exceed this limit. The concept of bounded ignorance [Krishnakumar and Bernstein, 1991] also
defines staleness in a transactional context by limiting the number of prior transactions whose results
are not visible.

In Pacitti and Simon [2000], secondaries can either apply updates immediately when they
receive it or later, whatever might be more efficient. Daudjee and Salem [2004] achieve session
consistency by letting read-only transactions of clients only access data at secondaries that contain
the last changes of this client.

Yu and Vahdat [2002] define error limits to a semantically defined conit instead of individual
data items. The system does not support transactions. Various bounds are considered, such as time-,
value- and order-bounds,where the latter refers to the number of updates that arrive at the secondaries
in a different order than originally executed. Several types of bounds can be defined at the same
time on a conit, and all bounds must be obeyed. Olston et al. [2001] offer a combined pull/push
approach. Based on value-based staleness, as soon as the true value at the primary copy differs by
more than the threshold difference from the secondary copy, the primary pushes the new value
to the secondary copy. At the same time, if a client that accesses the secondary requires a tighter
threshold difference than provided by the secondary copy, the secondary copy pulls the current
value from the primary. Query-initiated pull is also proposed by Röhm et al. [2002]. Read-only
transactions indicate the level of time-bound staleness they are willing to accept and the secondaries
pull updates from the primary depending on the staleness levels indicated by their queries. Both
the Leganet System [Gançarski et al., 2007] and DBFarm [Plattner et al., 2006b] have a central
router that sends queries to replicas that have an acceptable staleness level. Akal et al. [2005] provide
time-bound staleness guarantees.They also allow for flexible partial replication as it is possible that a
read-only transaction executes at multiple nodes depending on which data items it accesses.Guo et al.
[2004] provide an extension to SQL that allows the specification of time-based threshold values,
and guarantees read-only queries that access one or more tables to retrieve data from a consistent
snapshot. Bernstein et al. [2006] extend the approach to update transactions and other staleness

102 8. LAZY REPLICATION

criteria. Update transactions can submit their read requests to secondary copies where they might
read stale but bounded data. The updates themselves are submitted and executed at the primary.

8.4.2 REPLICA PLACEMENT
The subtle problems of 1-copy-serializability in multi-master systems are introduced by Chundi et al.
[1996]. Their solution is to restrict the location of primary and secondary copies. They assume a
partial replication model where not all nodes have a full copy of the database but only copies of some
of the data items. Then, for each data item, a node is chosen that holds the primary copy and a set
of nodes that hold secondary copies. If the configuration does not show any circular behavior then
execution can offer 1-copy-serializability. For instance, if one node holds the primary copy of x and
the secondary copy of y, and another node holds the primary of y and the secondary of x, then
there would be a cycle in the configuration which could possibly lead to non-serializable executions.
The restrictions on copy location can be relaxed if more sophisticated update propagation strategies
are used that guarantee that updates arrive in certain order at the different replicas [Breitbart et al.,
1999; Pacitti et al., 1999].

8.4.3 CONFLICT DETECTION AND RESOLUTION
Within the database community, lazy update anywhere mechanisms have not received a lot of at-
tention in the recent past. However, basically all commercial database systems provide them and
offer a wide range of detection and resolution mechanisms as described in this chapter. Several
distributed file systems, such as Coda [Kistler and Satyanarayanan, 1992] and Bayou [Terry et al.,
1995], apply the ideas of lazy update anywhere and propose various conflict resolution mecha-
nisms. Epidemic algorithms attempt to achieve eventual consistency in systems with large number
of replicas [Malkhi and Terry, 2007; Rabinovich et al., 1996; Wang and Amza, 2009]. Version man-
agement, in particular the handling of version vectors, is an important aspect. A good overview is
presented by Saito and Shapiro [2005].

103

C H A P T E R 9

Self-Configuration and
Elasticity

A replicated system is rarely static. First of all, the number of database replicas can change at any
time. Replicas fail and need to be reintegrated into the system, or they need to be added or removed
in order to provide the right amount of replicas for the given workload. Furthermore, as the workload
and the number of replicas change, the load has to be distributed appropriately over the available
replicas, Ideally, these reconfigurations occur dynamically, without interrupting current execution
across the system, and autonomous, i.e., without too much manual intervention. Such autonomous
and dynamic behavior can be expressed through self-properties.

In this chapter, we talk about three self-properties:

• Self-healing allows the system to properly handle failures, and consists of three different steps.
First, during normal processing, when no failures occur, coordination protocols ensure that all
components in the system have enough information to handle the failure of some of them.
These protocols are mainly the replica control protocols that we have described in the previous
chapters. Second, when a component fails, a failover procedure distributes the load assigned to
the failed component to available replicas. Third, a failed component has to perform a recovery
procedure in order to be reintegrated into the system. In the context of data replication, there
are two main challenges: the data copies on the recovering replica have to be brought up to
date as data might have changed during its downtime; furthermore, this recovery procedure
should not interrupt execution in the remaining system, at least not for a long time. Bringing
a database replica up-to-date could take a long time. It is essential that the remainder of the
system is still functional during this time.

• Self-optimization refers to measures that aim at optimizing the performance of the existing
system. We discuss some of them, such as load-balancing and replica placement.

• Self-provisioning is the task that decides on the right number of replicas in the system. In
newer terminology, this is called elasticity. An elastic system is able to dynamically adjust its
capacity to the current needs. Self-provisioning has to be able to add and remove replicas as
needed. It can use variations of the self-healing failover and recovery procedures to do so.

104 9. SELF-CONFIGURATION AND ELASTICITY

9.1 SELF-HEALING

As discussed before, a self-healing system has to implement three different tasks: coordination during
normal processing, failover, and recovery. Let us have a closer look at each of them.

9.1.1 FAULT-TOLERANT MEASURES DURING NORMAL PROCESSING
Replica control protocols during normal processing are used to keep the replicas consistent so that
no matter where transactions access data, they see an acceptable state. Even if a replication solution
is only implemented for fault-tolerance, i.e., all requests go to a primary and a backup replica will
only be used in case of primary failure, the backup needs to know about all updates. Thus, we refer
to the different protocols described in the previous chapters and use them as a baseline when we
discuss failover and recovery. As mentioned before, lazy update propagation does not provide the
same consistency level as eager approaches. Nevertheless, both eager and lazy approaches are used
for high-availability solutions providing a trade-off between performance during normal processing
and consistency in the case of a failover.

9.1.2 FAILURE TYPES
We can distinguish between various failure types. In this book, we only look at a very restricted type
of failure, namely process or machine crash. In both cases, we assume that the particular replica stops
execution of any tasks and does not communicate anymore with other replicas. All content stored
in main memory is lost, while data on secondary storage survive the crash and can be accessed when
the process/machine is restarted. This failure model is also referred to as crash-recovery model.

Network failures are very common, too, but we do not consider them in this chapter. Possible
failure types are network partitions, message loss and message corruption. Especially in wide area settings,
communication links might be broken such that all replicas are up but cannot communicate with
each other for a considerable time. Quorums, which are shortly discussed in Chapter 10, can handle
such partitions. In contrast, in this section, we assume that any partitions are only short-lived and
will eventually be repaired. Message loss is often caused by restricted buffer sizes at the end nodes
or intermediate routers, but it can be fairly easily handled by retransmission protocols (e.g., TCP).
Similar, message corruption can be handled with checksums and retransmission mechanisms. Thus,
we do not consider any of these failures but assume that point-to-point communication is reliable,
i.e., each message sent is eventually received unless sender or receiver fail.

Finally, we assume that no byzantine behavior occurs where nodes perform actions that do not
conform to the described protocols,be it due to software errors or malicious intentions.Byzantine fail-
ures make fault-tolerance considerably more complex.We refer the interested reader to Vandiver et al.
[2007] for a broader discussion on this topic.

9.1. SELF-HEALING 105

9.1.3 FAILOVER: CLIENT SIDE
Failover is the process through which the system reconfigures to overcome a failure of any of its
components. There are two failover components, one runs at the client side, the other at the server
side. In this section, we discuss the client side.

Client failover. Clients typically connect to a database system through a standard database API,
such as a JDBC or an ODBC driver. It is the client-side driver that provides the user the interface
to submit queries and then marshals and sends these requests to the database system, receives the
responses and returns them to the client in a language-conform format.

If replication should be transparent to the client, this driver has to be adjusted to perform any
replication related tasks in a transparent manner. In particular, the driver hides the failure of a replica
or the middleware from the real client. The driver typically communicates with the middleware or
a replica via a connection. If the middleware/replica fails, the connection is broken. The next time
the driver sends a request over the connection, it receives a failure message. This allows the driver to
detect the failure and initiate the client failover in order to hide the failure from the client. The first
task is to find an available replica or the backup middleware and connect to it. The second task is
to resubmit the last request over the new connection, i.e., the request for which a failure exception
was received as response.

Replica discovery. The client must find a new replica or middleware in order to automatically
reconnect after failure. Such information can be requested explicitly at failover or maintained at
run-time. In the first case, replica discovery can be used such as it was done when the client first
connected to the system (see Chapter 4). Replica discovery already takes into account any constraints
such as finding the primary replica in case of a primary copy approach or finding a replica that can
handle additional load. In the second case, information about available replicas can be maintained
dynamically by piggybacking it on replies to the client.

Outstanding requests. The client driver might have submitted a request to the failed replica for
which it has not received a reply or where the reply was the failure exception. In this case, the driver
has to resubmit the request to the new replica it connects to. In order to guarantee that each request
is processed exactly once, each request has to be uniquely identified. This can be achieved by using a
counter that is incremented with each new request combined with a unique client identifier. In this
way, the server side is able to detect whether the request has already been processed.

When a replica/middleware fails, a client can have an active transaction, i.e., it has already
sent read and/or write operations for this transaction, it might have even sent the commit request,
but it has not yet received the commit confirmation. Depending on the replica control mechanism
outstanding transactions can be resolved in different ways at the server side. They can be simply
aborted, they could be committed if the last submitted request was the transaction commit, or
they could even be resumed in some protocols if the remaining system has enough information. We
present some of them when we discuss the server side failover.The client driver will simply get a reply

106 9. SELF-CONFIGURATION AND ELASTICITY

to its resubmitted request that can be an exception aborting the transaction, the acknowledgement
of the commit or the reply to its request.

9.1.4 FAILOVER: SERVER SIDE
At failover time, the server side has to perform several tasks. First, the failure of a replica has to be
detected, and all available replicas have to agree on such failure. Second, in the case of a primary copy
approach, a new primary has to be selected. Third, atomicity for all outstanding update transactions
has to be guaranteed. In particular, for any update transaction that was submitted to the failed replica,
either all available replicas commit or abort this transaction. Last, as discussed above, the replicated
system must have a means to let the client software know the outcome of a transaction.

Failure detection. Reliable failure detection is a challenging task because it is difficult to determine
whether a process has really failed, is only slow or network connectivity is temporarily interrupted.
In this book, we do not discuss the intriguing challenges of failure detection. Instead, we rely on
the properties of group communication systems, as discussed in Chapter 4, that include a failure
detection mechanism and membership service. Whenever the system detects the failure of a process,
it removes the process from the current view of available members and informs the available members
delivering the new view. In our case, the members are the replicas.The group communication system
usually uses a consensus protocol in order to find agreement on a new view.

Choosing a new primary. In the case of primary-copy replica control or if a replicated centralized
middleware is used with several backups, the failure of the primary/middleware requires to choose a
new primary replica/middleware. When failure detection is left to a group communication system,
all available replicas will receive the information about the failure as a view change. When a primary
fails, one of the available replicas has to be elected as new primary.The simplest approach is to have a
deterministic function that, applied over the new view, selects a new primary. For instance, an order
can be assigned among all replicas at system start-up, and then each replica can deterministically
determine the new primary as the first replica available that appears in the new view. Alternatively,
a voting mechanism can be used to determine the new primary.

Deciding on outstanding transactions. Atomicity should be maintained even in the case of failures.
In particular, this means that if a transaction committed (respectively aborted) at the failed replica, it
should commit (resp. abort) at the available replicas. A transaction that was submitted to the failed
replica and active at the time of the failure, should either commit at all available replicas (but only
if the execution was completed and the commit request submitted) or at none of them.

In lazy schemes, a transaction might have committed at the failed replica before the failure but
the other replicas have not received the writeset yet. 1-copy-atomicity is violated for this transaction
as it does not survive the failure. One might want to try to recover this transaction when the
failed replica is recovered, but that would be complicated as thousands of transactions might have

9.1. SELF-HEALING 107

committed in between. Thus, if lazy schemes are used, the application must be able to live with the
possibility that transactions that committed shortly before the crash are lost.

Eager schemes use a mechanism to guarantee 1-copy-atomicity across all replicas. In this
book, we have seen two mechanisms how this can be achieved. The first is based on the traditional
2-phase commit (2PC) protocol as discussed in Chapter 3. The problem with 2PC is its costs and
the possibility of blocking. This occurs if the final commit to be sent by the crashed replica, acting
as coordinator, does not arrive at any or at some of the replicas. Then, these replicas are blocked.
Theoretically, blocking can be avoided if at least one available replica has received the commit
decision as it can inform the others. However, such termination protocol is usually not implemented
in existing 2PC tools. An alternative is 3PC, which is not blocking, but this protocol is typically not
implemented in real databases because it is considered too expensive.

In contrast, replica control algorithms that build upon group communication technology
to propagate update and commit information to all replicas can use the uniform reliable delivery
property of multicast messages to achieve 1-copy-atomicity. Group communication systems are
introduced in Chapter 4, and some example protocols based on their primitives are presented in
Chapters 6 and 7. The uniform reliable multicast guarantees that whenever a message is delivered at
a replica, even if it crashes immediately after the delivery, it will be delivered to all available replicas.
In the protocols described in Chapter 6 and 7, when a replica multicasts a writeset, it waits until it
is delivered locally, which is a confirmation that it will be delivered to available replicas, too. The
only task left is that they all decide on the same outcome that is guaranteed by the replica control
algorithm. Details are given in Chapters 6 and 7 when the individual protocols are discussed.

Client / server interaction. We already indicated that the client software, after detecting a failure
of the replica/middleware it is connected to, resubmits the last outstanding request. We have now
a closer look at how the server system responds for the protocols we have presented in Chapters 6
and 7. For the centralized protocols, we assume that they follow a centralized replicated approach
where there is, in fact, a backup middleware to which the clients reconnect.

We discuss two main cases. In case (i), the client has sent some read and write operations on
behalf of a transaction but not yet the commit request when the failure occurs. In case (ii), the client
has sent the commit request but the middleware/replica fails before it returns the commit confirma-
tion to the client. In both cases, the client resubmits the last request to the new middleware/replica
it connects to.

Let us first look at the pessimistic protocols of Chapter 6. For the centralized middleware
approach of Section 6.1, when this middleware fails, all database replicas lose their connections to
this middleware. Any active transaction for which the database has not yet received the commit/abort
request will be aborted by the database replica. Thus, for transactions for which no commit request
was submitted (case (i)), the simplest is to consider them aborted. When the client resubmits its
last operation to the new middleware, the middleware simply returns an abort notification. If the
client submits the commit request (case (ii)), the new middleware needs to know whether the replicas
received the commit request from the failed middleware before the crash or not.This can be achieved

108 9. SELF-CONFIGURATION AND ELASTICITY

by using a 2PC protocol among all replicas, and the middleware backups are also participants in
the protocol. Then, the backup middleware will be able to terminate the 2PC protocol as new
coordinator.

In the decentralized approaches of Sections 6.2 and 6.3, there are no individual read and write
operations, but the entire transaction request is sent in one message. For any transaction request
submitted to a replica before it fails, it is either delivered to all replicas or none because of the
uniform reliable multicast. Therefore, either all or none execute the transaction. Thus, if the client
software resubmits an outstanding transaction request to a new replica after reconnection, the new
replica handles it as a new request if the original request was not delivered (multicasting it to all
replicas and executing the transaction), or it returns the outcome of the transaction if the original
request was delivered.

In Chapter 7, if the centralized middleware in the protocols of Sections 7.2 and 7.3 fails, the
database replicas loose their connection to the middleware triggering the abort of any transaction for
which they have not yet received the commit request. Thus, the client needs to be informed about
this abort when it resubmits its last operation in case (i) above. For case (ii), in the primary copy
approach of Section 7.2, the primary could have committed the transaction before the crash or not.
If it has, also some of the secondaries could have committed it. The new middleware must know
about this. One possibility is to add a write operation to the transaction that inserts the transaction
identifier into the database. Then, the new middleware can look for the identifier in each of the
database replicas. If it is there, the transaction committed at this replica, if not, it did not commit.
If it did not commit at the primary, it has to return an abort to the client. If it committed at the
primary but not at some of the secondaries, it can return an ok to the client, and it has to apply the
writeset at the secondaries that still miss it. Similarly, in the centralized update anywhere approach
of Section 7.3, the backup middleware must know the outcome of the validation, and if positive,
must know at which replicas the writeset was already applied. It must respond accordingly to the
client and finalize writeset processing. Adding the insert of the transaction identifier as an additional
write operation can again help in performing this task.

The distributed approach in Section 7.4 is simpler to handle. The available replicas do not
even know about a transaction for which the commit operation was not yet submitted. Thus, when
they receive the resubmit of a read or write operation in case (i), they can simply return with an abort
information. In case (ii), the writeset was either delivered to all or none of the available replicas.Thus,
when the client software resubmits the commit request to a new replica, this replica can respond
with the proper outcome if the writeset was delivered or with an abort information if it was not
delivered.

9.1.5 RECOVERY
Recovery has the task to restart a failed replica and integrate it into the replicated system. Further-
more, if availability should be increased for a running system, also completely new replicas, that
do not yet have any database state, must be integrated into the system. There are several issues to

9.1. SELF-HEALING 109

consider. First, as in a non-replicated system, the recovering replica has to bring its own database
copy into a consistent state, assuring that the changes of transactions that committed before the
crash are integrated in its database image, and no changes of aborted transactions or transactions
that were active at the time of the crash are reflected.This local recovery procedure is shortly explained
in Appendix A.

In a second step, the data transfer has to provide the recovering replica with the current state
of the database. During its downtime, the remaining system can have committed many transactions,
whose changes have to be applied at the recovering replica before it can start processing transactions
on its own. If the replica is new, it first has to receive a full database copy.

The final aspect is the coordination with ongoing transaction processing.The simplest method
queues any incoming new transactions and waits until all current transactions have terminated.Then,
it performs the state transfer,and only once it is completed, transaction processing can resume.As data
transfer times can be really large, this would interrupt service for an unacceptable long time resulting
in unavailability of the database during recovery. Instead, transaction processing should continue
during the data transfer. However, this requires recovery to be synchronized with the execution
of transactions. A recovery coordination protocol has to guarantee that the recovering replica does
not miss the updates of any of transactions that commit during the recovery process. That is, the
recovering replica either receives the updates of such a transaction as part of the data transfer or the
transaction is handled after the data transfer completed using the standard replica control mechanism
in place. The recovery coordination must be specifically designed for the replica control mechanism
in place.

In the following, we have a closer look at data transfer recovery coordination.

Data transfer strategies. There are two main approaches current replication solutions use for data
transfer. In both cases, one or more of the available replicas or the middleware are responsible to
transfer the data to the recovering replica. The first alternative transfers the entire database state.
Such mechanism can, e.g., exploit the load and dump or migration mechanisms that most database
systems provide.This mechanism is always needed if a completely new replica is added to the system.
In the second alternative, the recovering replica receives and applies all the writesets of transactions
that have committed during the replica’s downtime. Kernel based replication solutions can directly
exploit the standard database log that is also used for local recovery. Middleware based solutions
can either resort to log mining facilities, if available, or log the writesets at the middleware level for
recovery purposes.

Both alternatives have their drawbacks. A complete database transfer also transfers data items
that have not been updated during the recovering replica’s downtime. That transfer is unnecessary.
Using the writeset transfer, for data items that are frequently updated many updates will be applied
during recovery although only the final value is of importance. A general guideline is that the smaller
the database and the more transactions the failed replica has missed during its downtime, the more
suitable is a full database transfer. However, if the replica was only down for a short time, transferring
the writesets is probably more suitable.

110 9. SELF-CONFIGURATION AND ELASTICITY

In general, the recovering replica only needs the final values of all data items that changed
during its downtime. Determining this set, however, is not trivial. It could, e.g., be determined by
scanning the writesets and then only apply the latest change for each affected data item.This writeset
analysis can be done by the replica that transfers the writesets or by the recovering replica when it
receives the writesets. Many different optimizations are possible. However, we are not aware of any
system applying them.

Recovery coordination protocol. While state transfer takes place, transaction processing needs to
continue in the rest of the system. The replicas that provide the recovering replica with the data
might not be able to execute transactions, at least not at full capacity, but the available replicas that
are not involved in the transfer should be able to dedicate their full capacity to transaction processing.
The challenge is to guarantee that the recovering replica does not miss any of these transactions.
What is needed is basically a synchronizaton point.The updates of transactions that committed before
the synchronization point are reflected in the data transferred during recovery. At the time of the
synchronization point, the recovering replica becomes an available replica, and it applies updates
through the standard replica control protocol in place. Finding such a synchronization point is
relatively easy in systems with a central middleware or in systems that use a group communication
system to multicast writesets to all replicas. In the latter case, once data transfer is nearly completed,
the recovering replica can join the replication group and a view change message is delivered at all
replicas.This view change message can be used to determines the synchronization point.The updates
of transactions delivered before the view change are included in the data transfer; the transactions
delivered after the view change are directly processed by the recovering replica.

9.2 SELF-OPTIMIZATION

A system is self-optimizing if it optimally exploits the given resources. The number of replicas is
clearly a critical factor. We discuss this in the next section. In this section, we explore optimization
possibilities when a fixed number of replicas is provided. A main issue is load-balancing: distributing
the incoming requests over all available replicas. Most of this section is dedicated to load-balancing,
but we also shortly discuss other measures.

9.2.1 LOAD-BALANCING
The task of load-balancing is to decide where incoming transactions are going to be executed. Clearly,
this depends to some extent on the replica control algorithms. But at least read-only transactions can
be executed on any replica, independently of the replica control algorithm. When clients connect
directly to replicas, they typically submit all their transactions to this local replica.Thus, the only time
point for load-balancing is at connection time. In contrast, with a central middleware, all requests
are redirected through the middleware, which allows load-balancing on a transaction basis or even
an operation basis. In the following, we assume load-balancing is done on a transaction basis.

9.2. SELF-OPTIMIZATION 111

Load-balancing can provide load awareness and application awareness. Load-aware load-
balancing takes the load on the different replicas into account when assigning transactions to a
replica; application-aware load-balancing is aware of the access patterns of various transaction types
and assigns transactions to replicas so that to exploit commonalities. We have a closer look at some
of these strategies.

Load- and application-blind techniques. The most common and frequently deployed load-
balancing strategies are neither load- nor application-aware. But they are simple to implement.

• Random simply assigns a transaction randomly to one of the available replicas. Over time,
transactions will be equally distributed among the replicas. The advantage of random is that,
except of a random number generation module, it requires absolutely no state information.

• Round-robin distributes transactions to replicas one by one so that each replica receives ex-
actly the same amount of transactions. This technique requires a minimum amount of state
information as the load-balancer has to know, which is the next replica to assign a request to.

Load-aware techniques. Load-aware techniques take into account that requests can generate dif-
ferent load. If the transaction workload is a mix of simple and complex transactions, then one replica
might be easily able to handle two simple transactions concurrently while a single complex transac-
tion might already bring the replica close to saturation. Furthermore, the nodes might have different
capacity, and it makes sense to assign them transactions according to their capacity, which means
a new transaction should be assigned to a replica that still has the available capacity to execute it.
Load-aware techniques are implemented in many domains, not only database replication.

• Shortest Queue First considers the number of transactions that are currently executing on a
replica and assigns a new transaction to the replica with the fewest number of active trans-
actions. Thus, this technique does not require a lot of information. In particular, it does not
require any knowledge about the transactions themselves. However, the number of transac-
tions might not be an exact reflection of the load, as a single complex transaction might require
more resources than several simple ones. Nevertheless, it avoids a heavily loaded replica to get
more and more transactions that it would not be able to handle.

• Least Loaded collects a more accurate picture of the load on each replica. For that, each replica
has to provide information about its current load to the load-balancer.This could be CPU and
I/O usage. Different to what the title indicates, the load-balancer does not always choose the
least loaded replica as the available load information might be somewhat stale. Instead, it ranks
replicas according to their load and simply assigns transactions to the less loaded replicas with
a higher probability than to the higher loaded replicas. Replicas that are close to saturation
will be completely avoided. This mechanism requires the replicas to provide the load-balancer
with status information on a regular basis, adding significantly to the complexity.

112 9. SELF-CONFIGURATION AND ELASTICITY

Application-aware techniques. If the load-balancer exploits knowledge about the application, it is
application-aware.

• Shortest Execution Length needs to have an estimate of the execution time of each type of
transaction. Typically, the application has a predefined set of transaction types, and, run in
isolation, each transaction type has a certain execution time: complex transaction types can
take several seconds or even minutes, while simple transaction types can be as short as a
few milliseconds. These average execution times can be determined offline and provided to
the load-balancer. Then, the load-balancer keeps track of the outstanding transactions at each
replica and sums up their estimated execution times.This represents the application-dependent
load on this replica. A new transaction is assigned to the replica with the lowest application-
dependent load. This mechanism requires a-priori test runs. If execution time for a particular
transaction type can vary a lot, then the method is not very precise. It also does not consider
that concurrently running transactions can interfere with each other leading to execution times
that are very different from those that were measured when transactions run in isolation.

• Locality-aware request distribution (LARD) considers the data access patterns of transactions.
One of the most expensive costs of transaction execution is secondary storage access when
a data item has to be read from disk because it is not yet cached in the database buffer.
Often, transactions of the same transaction type access the same tables or data objects. Thus,
if transactions of the same type are always sent to the same replica, it is more likely that they
find the data they access already in the main memory buffer avoiding expensive I/O. One
can even bundle several transaction types into a workload group if they have a large set of
overlapping tables. Then, the load-balancer keeps track of where it sends transactions, and
when a new transaction comes in, it assigns it to a replica that has executed transactions of the
same workload group in the recent past.The idea is that transactions that access the same data
are executed by the same replica, allowing the replica to keep all necessary data in main memory.
Transactions with different access patterns are distributed across the replicas, so each replica
buffers different parts of the database. If there is one dominant transaction type, the replica
that is in charge of this transaction type might quickly be overloaded even if it is able to cache
all relevant data. Therefore, the approach should be combined with some load-awareness, and
assign several replicas to popular transaction types, respectively, workload groups.

A drawback of this approach is that it might be hard to know the data items that a transaction
is going to access. By parsing the application code, it might be easy to determine the database
tables, but this is only a rough estimate and might not say a lot about the particular records to
be accessed. If the estimates are wrong, LARD might not work as expected.

• Memory-aware distribution. LARD does not work if the data set of a workload group does not
fit into the main-memory buffer. Then, new data items continuously replace less recently used
data. Therefore, memory-aware distribution also takes the size of the data into account and
limits a working group to transactions whose combined set fits into main memory.

9.2. SELF-OPTIMIZATION 113

• Affinity-based distribution.Depending on query execution strategies within the database engine,
two transactions might not benefit if they run concurrently on the same machine even if they
access the same data. For example, when a query requires a simple scan over a relation, the
database system often does not use the standard buffer for pages read during the scan. Thus,
two transactions that perform a scan over the same relation will both produce I/O, resulting
even in a negative effect. Thus, affinity-based balancing only collocates transactions where the
common data access actually benefits both, i.e., if their concurrent execution is significantly
faster than their sequential execution.

• Conflict-aware distribution. In many replica control algorithms, transactions that execute con-
currently on one replica are isolated by the concurrency control mechanism of the local database
while conflicts between transactions executing on different replicas are often only detected at
end of transaction. Thus, if conflicting transactions execute on different replicas, their con-
flicts are detected very late leading to late aborts. Executing conflicting transactions at the same
replica avoids such late abort. Thus, conflict-aware distribution attempts to assign conflicting
transactions to the same replica to localize conflicts.

Determining which transactions conflict in advance is similar to determining the data items
they access, and wrong estimates are easily possible.

• Staleness aware distribution. Chapter 8 presents lazy protocols that limit the staleness of sec-
ondary copies. Some approaches allow each query to indicate its own limit of how much
staleness they accept. When such a query is received by the middleware, the middleware has
to find a replica that has at most the staleness limit indicated by the query. If no such replica
exists, one of the replicas has to be updated to reflect the required staleness level. A load-
balancer that considers not only the staleness level, but also the costs associated with bringing
a too stale replica up-to-date, is a staleness-aware load-balancer.

Which of the many load-balancing strategies works best strongly depends on the workload,
the particular configuration in terms of number of replicas and replica control algorithm, and the
overall load submitted to the system. Clearly, simple methods such as random and round-robin are
quickly outperformed by more sophisticated techniques. However, the more complex a technique is,
the more resources it might need during runtime and more complex techniques are not always better.
For example, LARD has shown to work worse than shortest execution length, although on paper
it appears appealing. Application-aware mechanisms require a careful analysis of the application
beforehand, which might not always be possible. Also, if the application changes, the load-balancer
needs to be redesigned.

9.2.2 OTHER OPTIMIZATION TECHNIQUES
Load-balancing is not the only technique that attempts to optimally use the available resources. We
briefly discuss two other mechanisms: data placement and load control.

114 9. SELF-CONFIGURATION AND ELASTICITY

Data placement. Under partial replication, each data item has only copies on a subset of nodes.
The challenge is to decide on the number of copies for each data item and their location. In cluster
configurations, where all nodes reside in the same local area network the main goal is typically to
keep the update overhead low while providing enough resources to read operations. Thus, the more
a data item is updated, the less copies it should have, while the more it is read, the more copies it
should have. The system has to find the right replication degree for each data item and distribute
the data copies across the nodes such as to have equal load on all nodes.

In contrast, in a wide area setting, data placement is driven by response times. If a data item is
not locally available, a remote access is needed.This is expensive if nodes a geographically distributed
and connected through the Internet. Furthermore, if a node becomes disconnected from the rest of
the system, data items without local copies become unavailable. In this setting, the system has to
decide on a data placement that presents a trade-off between avoiding remote access and keeping the
global update overhead small. Such data placement should ideally be automatically and dynamically
adjusted if the workload changes. Local copies should be created if the fraction of local accesses is
high, and be dropped in case there are only few accesses.

Finally, if distributed transactions are to be avoided, data copies have to collocated such that
each transaction has a node that has copies of all data items the transaction accesses.

Load control. Standard optimization techniques, that can already be used in non-replicated systems,
are also applicable in replicated environments. For example, load control techniques limit the number
of transactions that can be concurrently executed by a single database system, the so-called multi-
programming level (MPL). If more transactions are submitted, they are simply queued until running
ones complete. Such a limit on the MPL avoids that performance deteriorates when too many
requests compete for the same resources. However, the optimal MPL changes with the workload,
what means that a dynamic adaptation is required. In a replicated system, MPL limits and load-
balancing work together. Load-balancing ensures an even load at global level, while execution at
each replica is optimized through local load control.

9.3 ELASTICITY: SELF-PROVISIONING
In this section,we look into elasticity.A system is elastic if it automatically adjusts the number of repli-
cas to the current workload. Elasticity is attained by means of self-provisioning. Self-provisioning
adds new replicas to the system if the current system cannot handle the workload anymore and
removes unneeded replicas. Self-provisioning has many commonalities with self-healing, but recon-
figurations are triggered differently. Self-healing reconfigures the system when failures occur and
replicas restart, while self-provisioning reconfigures the system if changes in the global load occur.

9.3.1 SYSTEM RECONFIGURATION
We discussed load-balancing in the previous section as a mechanism to maximize the utilization
of available resources. It guarantees an even load across replicas. However, if the load increases, the

9.3. ELASTICITY: SELF-PROVISIONING 115

available computational capacity of the replicated system might not suffice to process the load. This
is when self-provisioning comes into place. The self-provisioner determines when reconfiguration is
needed and performs the necessary steps to do so. For that, it has to monitor the load on each replica.
Simple load imbalances should be handled by the load-balancing component. But if load reaches a
threshold on most replicas, e.g., the average replica CPU utilization is above 90%, the addition of a
new replica needs to be triggered. If the current workload can be satisfied with a lower number of
replicas than currently active, replicas can be removed.

Self-provisioning can be reactive or proactive. A reactive approach triggers a reconfiguration
when the load threshold is reached. A proactive approach uses prediction mechanisms in order to
perform reconfiguration ahead of time, such that it is completed before saturation occurs. Prediction
mechanisms could be based on time series or machine learning approaches.

Removing a replica in case of underload is a fairly simple process. The self-provisioner moves
the load of the replica to be decommissioned to the rest of the replicas. In a simple scheme, one can
wait until all outstanding transactions have committed while no new transactions are assigned to
this replica. Once the replica to be decommissioned does not receive any load, it can be released.

Adding a new replica is conceptually the same as recovering a new replica. First, the entire
database copy must be transferred to the new replica. Then it has to receive all updates that occurred
during this transfer. This can be a lengthy process. The problem can be alleviated by keeping two
sets of replicas. The active replicas execute transactions. Inactive replicas do not get any transactions
assigned, i.e., they do not have any local transactions. Furthermore, their database copies get updated
in a lazy fashion either by sending them the writesets or by providing them with periodic checkpoints.
In this way, adding one of the inactive replicas to the set of active replicas takes similar time or is
even faster than recovering a failed replica that was down for a short time. However, the approach
consumes resources on replicas that are inactive as they have to install writesets or checkpoints on a
regular basis.

9.3.2 DECIDING ON THE RIGHT NUMBER OF REPLICAS
Load metric. One of the most critical factors for self-provisioning is the metric to be used for
measuring the replica load. One possibility is to measure the resources used by each replica such as
CPU and disk utilization. One of the main difficulties is that bottlenecks move from one resource
to another when the workload varies. For instance, if the workload consists of a high percentage of
complex read operations and most of the data reside in the database cache, then the CPU becomes
the bottleneck. In contrast, update intensive workloads requiring many disk writes and read-only
workloads scanning large parts of the database that do not fit into main memory, are I/O bound
as the disk becomes the bottleneck. The load metric needs to be complete enough to determine
the type of workload that triggered the bottleneck. For instance, adding new replicas does not help
update intensive workloads if the number of replicas has reached the scalability limit. In contrast,
read-intensive workloads can always be scaled by adding new replicas.

116 9. SELF-CONFIGURATION AND ELASTICITY

A different type of metric is response time. Often, service providers offer service level agree-
ments that guarantee a certain performance. For instance, the service level agreement could specify
that most of the transactions (e.g., 90% of all transactions) must complete within a certain re-
sponse time limit (e.g., two seconds). In this case, self-provisioning is triggered to add more replicas
once more than the agreed percentage of transactions takes longer than the specified limit. Average
response time can be an alternative metric.

Cost prediction. The provisioning process itself takes time and resources. Especially, adding a new
replica is cost- and time-consuming. Depending on whether a completely new replica is added, or
an inactive replica that already has a stale version of the database, reconfiguration times can vary
significantly. They are determined by the size of the database, and the number of writesets to be
transferred and applied.The costs and time of these processes can be estimated by running extensive
offline tests for different database sizes and number of writesets to be transferred.

Proactive provisioning can help in starting reconfiguration ahead of time so that the new
replica is available when the workload has reached the level at which a new replica is necessary.

Monitoring. Monitoring the load has also a cost attached to it. The more data are collected the
more does monitoring have an impact on the performance of the system. The right tradeoff has to
be found. Furthermore, the monitoring component also needs to take into account other activities
that execute in the underlying system. For instance, many database systems perform periodic tasks
such as checkpoints, compressing pages, etc. that consume resources temporarily but have nothing
to do with the current workload. Finally, while reconfiguration takes place, monitoring should be
interrupted because system performance will deviate from its typical behavior.

9.4 RELATED WORK
Self-healing. Most replication approaches include failure handling, and we have discussed the
related literature throughout the book. Thus, here we mainly focus on recovery. First recovery pro-
cedures for a kernel based replicated system are presented by Kemme et al. [2001]. Several data
transfer strategies and their synchronization with ongoing transaction processing are presented.
Jiménez-Peris et al. [2002a] present a middleware based recovery protocol where the middleware
logs writesets and uses multiple recoverers to transfer state concurrently. Liang and Kemme [2008]
provide an evaluation of recovery protocols that determines, depending on database size and the
number and size of writesets, which of two strategies is more efficient. Vilaça et al. [2009] study the
impact of having multiple recoverers and flow control. Recovery for warehouses distributed over the
Internet has been proposed by Lau and Madden [2006], and recovery for main-memory database
replication is discussed by Manassiev and Amza [2007].

In a different context, Vandiver et al. [2007] introduce a Byzantine replication database
protocol to tolerate intrusions in databases. They discuss how to integrate the Byzantine agreement
with the replica control of the database. Preguiça et al. [2008] exploit snapshot isolation in the
context of Byzantine fault tolerance. Gashi et al. [2007] present a replication approach that tolerates

9.4. RELATED WORK 117

software faults in database engines. By having diverse databases, they are able to mask software
faults, for instance, in SQL processing, or faults that make a database engine crash. Diverse database
replication has some commonalities to Byzantine replication but focuses on tolerating design failures
instead of intrusions. Byzantine fault tolerance implies to have some kind of Byzantine agreement
that is typically very expensive, while diverse database replication has similar cost as regular database
replication. Interestingly, the only architectural choice for diverse database replication is a middleware
based approach in order to support the heterogeneity of database engines.

Self-optimization. Load-balancing is a well-explored research area. From the techniques pre-
sented in Section 9.2, shortest execution length and locality-aware request distribution are pro-
posed by Amza et al. [2005], memory-aware distribution by Elnikety et al. [2007], affinity-based
distribution by Röhm et al. [2000], conflict-aware distribution by Zuikeviciute and Pedone [2008],
and staleness aware distribution by Röhm et al. [2002] and Gançarski et al. [2007]. Load-balancing
for pessimistic replica control with decentralized middlewares is presented by Milán et al. [2004].
The challenge is to distribute transaction execution equally across all replicas while clients are con-
nected to one of the many replicas. The paper also combines load-balancing with limiting the
MPL [Heiss and Wagner, 1991] locally at each replica. External control over MPLs is proposed
by Schroeder et al. [2006]. In the context of partial replication, Wolfson et al. [1997] consider data
placement taking into account the read and write load on each data item, while Serrano et al. [2008]
perform adaptation of the number of data copies in a wide area setting adding copies to nodes when
local clients request them, and removing them if they are not needed.

Self-provisioning. Self-provisioning of replicated database systems has been first described
by Soundararajan and Amza [2006] proposing a reactive provisioning approach for a fully repli-
cated system. Chen et al. [2006] improve over the previous approach by using a proactive approach
based on offline learning which predicts for a particular application when the load increases. Thus,
provisioning new replicas can be done earlier than in a reactive approach. Soundararajan et al. [2006]
study self-provisioning in the context of multiple applications sharing the same database. Adding
data copies dynamically to nodes in partially replicated systems can also be considered a form of
self-provisioning [Serrano et al., 2008; Wolfson et al., 1997].

119

C H A P T E R 10

Other Aspects of Replication
In this last chapter, we discuss shortly other aspects of database replication.

• Database systems typically represent the backend tier of multi-tier information systems and
other tiers might cache data from the database tier for faster access.This requires replica control
across tiers. We discuss multi-tier architectures in Section 10.1.

• Quorum systems are an alternative to ROWA where both read and write operations only access
a quorum of replicas, guaranteeing that conflicts become visible at least one replica. They are
discussed in Section 10.2.

• In this book, we have focused on traditional distributed database systems, where we can expect
to scale to tens or at most hundreds of nodes, and we assume standard wide and local area com-
munication. Section 10.3 provides an outlook at the challenges associated with data replication
in other computing environment such as mobile computing with very limited and unreliable
connectivity, and peer-to-peer systems that might scale up to thousands of nodes.

10.1 MULTI-TIER ARCHITECTURES

Modern information systems usually follow a multi-tier architecture. The client is a web-browser or
uses an API based on web-services. Client requests are received by a web server which implements
the presentation logic providing static content and web-page generation. More complex requests are
forwarded to the application server, which implements the application logic. The application server
calls the backend database tier when business critical data are accessed as such data are maintained
by a database server. In most cases, the web-server is stateless, meaning that no state is maintained
between client requests. However, the application server often caches data from the persistent tier,
often in object-oriented format, as this is the prevalent data model for application programming.
In principle, a cached data item is a replicated data item that only exists for limited time. Thus,
cache consistency protocols are required that have some similarities with replica control algorithms.
Furthermore, application servers are often replicated by themselves, leading to further replication of
the database items.

In a typical execution, whenever an application program requires a database item for the first
time, it first checks whether the data item already resides in the local cache. If yes, the cached copy is
used. Only if the data item is not in the cache, a query to the database system is issued, the data item
retrieved, transformed into the object-oriented model, and stored in the cache. As several programs
might access the cache concurrently, the cache has to implement some concurrency control protocol.

120 10. OTHER ASPECTS OF REPLICATION

Current application server technology uses the cache often only if requests are for individ-
ual data items, identified by their primary key, as the application server and its cache usually lack
query functionality. Declarative queries with search predicates are therefore sent directly to the
database system ignoring any data items that might be cached. This execution has similarities with
a replicated system where some requests are directed to the cache and others to the database. In-
terestingly, if the cache uses a locking-based concurrency control and the underlying database uses
snapshot isolation, execution can easily be neither 1-copy-serializable nor provide 1-copy-snapshot
isolation [Perez-Sorrosal et al., 2007].

Things can become even more complicated if the application server is replicated and each
server instance has its own database cache. Then, when one application server updates a data item,
its copy in the cache will be updated but not the others. Most systems use cache invalidation schemes
to notify other caches that their copies have become invalid. If transactions at these remote instances
have already accessed some data items, they must be aborted. Invalidation is usually done lazily, after
transaction commit.Therefore, similar conflict problems as with lazy update anywhere can therefore
occur.

10.2 QUORUMS

ROWA approaches require all replicas to be available to execute a write operation while ROWAA
protocols require complex failover mechanisms to detect failures and exclude the failed replica in a
proper way. Quorums systems avoid these problems and achieve availability in a simple way. The
idea is that each write operation only accesses a quorum of replicas. A quorum must include enough
replicas to guarantee that each two write operations access at least one common replica. Then,
conflicts can be detected and serialized at this replica. A typical quorum could be the majority of
replicas, i.e., n/2 + 1 in an n-node system. Using quorums there is no need for failure detection and
failover. Each write request must simply find a quorum of available replicas to succeed. Recovery is
also very simple. When a failed replica rejoins the system, the first write that chooses the replica to
be included in its quorum writes the data copy of this replica, which becomes current.

Writing only a quorum of replicas makes read operations more complex. It is not enough
that they read any copy if they want to have the guarantee to read the latest version. Instead, they
also have to read a quorum of replicas so that any read quorum overlaps with every possible write
quorum. Then, it is guaranteed that one of the copies that they access will have the latest value. In
order to determine which of them has actually the latest value, write operations need to timestamp
the data copies in order to create one total order of updates on any given data item.

Despite their elegance, quorums have never been used in any commercial database system.
One of the reasons might be the need for timestamps for each data items, which is difficult to
achieve in a relational database system. However, the main reason is likely the increased costs for
read operations [Jiménez-Peris et al., 2003]. In basically all applications, read operations are much
more frequent than write operations, and the performance penalty is simply too high.

10.3. MOBILE AND PEER-TO-PEER ENVIRONMENTS 121

However, with the rapid development of data centers, large scale data management and cloud
computing, quorum systems have suddenly received unprecedented attention. The main focus lies
on availability. As large scale systems increasingly start to rely on commodity hardware as storage
resources, not only single failures but concurrent failures have become common. For such storage
systems, quorum systems appear attractive to efficiently write data to stable storage in a reliable
manner. First large scale implementations have been conducted [Chandra et al., 2007], and quorum
libraries start to be available. Nevertheless, building quorum systems remains highly complex.

10.3 MOBILE AND PEER-TO-PEER ENVIRONMENTS
This book has focused on traditional database replication in local- and wide area networks, consid-
ering scalability in the tens or at most hundreds of replicas. However, data replication is also crucial
in other domains such as mobile and peer-to-peer environments.

Mobile environments. There are several fundamental differences between a mobile environment
and the wired world. First, communication is slow and unreliable, bandwidth is low, and discon-
nections occur frequently. Secondly, the capacity of mobile devices ranges from powerful laptops to
tiny sensors with considerable less computing power and memory. Replication in such environments
is used for availability during periods of disconnection, and for fast local access. Synchronization
and replica control will likely occur always in a lazy fashion. Replicated data management in mobile
environments is discussed in detail by Terry [2008].

Peer-to-peer environments. In peer-to-peer environments, each node is server and client at the
same time, providing service and content to others while requesting them from other nodes. Peer-
to-peer systems can scale to hundreds of thousands of nodes.They are organized in application-level
overlays, sometimes structured, sometimes only loosely connected. One of the main applications of
peer-to-peer systems is file sharing. People download files from others and offer their files to the
community. With every download, a new copy of a file is automatically created.

The tasks and challenges related to data replication in such environments are fundamentally
different to traditional database replication. One major challenge is search, that is, to find peers
that have copies of the requested data items. A second issue is to efficiently download files and
truly share the load among all peers. A third challenge is to maintain the overlay structure despite
frequent failures, disconnects and newly arriving peers. Data consistency, in contrast, plays only a
minor role. Most data items are believed to change seldom. In any case, transactional properties are
rarely considered, and achieving eventual consistency is already a challenging goal given the scale
and dynamics of such systems.

123

A P P E N D I X A

Transactions and the ACID
Properties

A database can be seen as a set of data items x, y, An application encapsulates its data accesses
into logical units called transactions. A transaction Ti is a sequence of read operations ri(x) and
write operations wi(x) on data items. A database system provides certain properties when executing
transactions, referred to as the ACID properties: atomicity, consistency, isolation and durability.

A.1 ATOMICITY
Atomicity reflects the all-or-nothing property. A transaction Ti either executes completely and
terminates with a commit operation (indicated as ci), or it aborts (indicated as ai), in which case,
it should not leave any effect in the database. An abort can be induced due to several reasons. For
example, the application program can decide on abort due to application semantics (e.g., there is
not enough money in the account to perform a withdraw), or there is some failure (the connection
between client and database system is broken). If a transaction has already executed some write
operation wi(x) and then aborts, the changes it performed on x need to be undone. This process
is called local undo recovery. There are several mechanisms to achieve is. For example, before wi(x)

is executed, the before-image of x can be logged. When an abort occurs, a compensation operation
w−1

i (x) sets x back to the value of the before-image. Alternatively, the write operation wi(x) might
actually not change x but perform the operation on a temporary copy of x. At the time of an abort,
this temporary copy is simply discarded. Only if the transaction commits, the value of the temporary
copy is applied to x.

A.2 CONSISTENCY
Assuming the database is in a consistent state before a transaction starts, consistency guarantees that
the database is again in a consistent state when the transaction commits.This is a quite fuzzy property.
Consistency depends on the application semantics and application programmers are responsible to
define the individual read and write operations of transactions. If the operations generate inconsis-
tency, then the database has no means to know that. However, database systems provide mechanisms
to help database designers to specify integrity constraints, which are constraints that should hold
over any instance of the database. For instance, the application might require every client to receive
a unique identifier, every bill to refer to an existing client, and every account to have a non-negative

124 A. TRANSACTIONS AND THE ACID PROPERTIES

balance. The first constrained can be achieved by defining an attribute in the client table to be a
primary key. The database will then disallow two tuples to have the same value in the primary key.
The second constrained can be specified through a foreign key which requires each bill tuple to point
to a client tuple. The third constrained can be achieved by restricting the domain of the balance
attribute. In summary, database systems provide an interface to define common constraints at design
time and enforce these constraints during runtime.

A.3 DURABILITY

Durability guarantees that committed transactions are not lost despite failures. The typical failure
types considered are process failure (the process(es) running the database management systems
crash) or the machine on which the database management system runs, crashes, e.g., because of a
power outage. In general, it is assumed that all information in main memory is lost or corrupted,
but all information that was written to stable storage, typically a disk system, remains accessible.
Thus, before a transaction commits, enough information must be made persistent so that all changes
performed by the transaction are reflected on stable storage. In the simplest case, all disk pages
changed by a transaction are written to disk before commit. However, as random access to stable
storage is expensive, many database systems only write the after-images of changed records to an
append-only log. Only the log is flushed to disk whenever a transaction commits making transaction
execution faster. However, when a database recovers after a crash, committed transactions whose
changes are not reflected on the database pages on disk have to be redone. This is done by scanning
the log and installing the corresponding after-images.

In the case of a crash, atomicity also needs to be revisited. When a transaction is active at the
time of a crash it is impossible for the system to guarantee successful completion. However, it might
be possible that some changes were already written to stable storage before the crash. At the time of
recovery, these changes have to be undone, just as it is necessary to undo changes when a transaction
aborts during normal processing. Therefore, before-images are typically also appended to the log,
and the log is flushed before a data page is written to disk. At the time of recovery after a failure,
these before-images might need to be installed for active or aborted transactions depending on the
state on the data pages.

A.4 ISOLATION

If all transactions only read data items, then running them concurrently is no problem. However, as
soon as updates occur, problems arise and the database system has to properly isolate transactions.
In the ideal world, the concurrent execution of a set of transactions should be equivalent to a
serial execution of these transactions. That is, if there are two transactions Ti and Tj and their
execution interleaves (e.g., they execute their operations in alternating order), it should appear to
both transactions as if either Ti completely executed before Tj or Tj executed completely before Ti .
That is, each transaction should have the impression it is alone in the system. Such an execution, also

A.4. ISOLATION 125

Figure A.1: Example executions

called schedule, is called serializable, as it is equivalent to a serial execution. If Ti and Tj access disjoint
data sets, then isolation is trivially fulfilled. Any interleaving execution is serializable. However, if
they access common data items, isolation is more difficult to achieve. In the case of read operations,
there is still no problem as they do not affect each other. However, as soon as there is one write
operation on a data item x, and the other transaction has either also a write or a read on x, the
operations affect each other; we say they conflict. If Ti writes x and Tj reads it, there is a difference
whether Tj reads x before or after Ti ’s write. Similar, if both write x, the order matters as it determines
the final value of x.

Figure A.1 shows two examples of interleaved schedules. Time passes from top to bottom.
In both schedules, T1 first reads x and then writes y. In Schedule S1, T2 first writes x and then y.
In schedule S2, it first rites y and then x. Schedule S1 of Figure A.1(a) is serializable, as for both
pairs of conflicting operations (r1(x)/w2(x) and w1(y)/w2(y)), T1’s operations executes before T2’s
operation. Thus, the schedule is equivalent to an execution where T1 executes completely before T2.
Schedule S2 of Figure A.1(b) is not serializable. r1(x) executes before w2(x) but w1(y) executes after
w2(y). But in a serial execution T1 before T2 both of T1’s operations execute before T2 operations,
and in a serial execution T2 before T1 it is the other way around. Whether an execution is serializable
can be tested using a serialization graph. The transactions are the nodes and there is an edge from
transaction Ti to Tj if one of Ti ’s operations is executed before a conflicting operation of Tj . The
serialization graph of the execution of Figure A.1(a), is shown just below the schedule itself, and has
only an edge from T1 to T2,while the serialization graph of Figure A.1(b) has edges in both directions,
and thus, a cycle. In fact, a schedule is serializable if the serialization graph is acyclic [Bernstein et al.,
1987].

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00296ED1V01Y201008DTM007&iName=master.img-032.jpg&w=254&h=160

126 A. TRANSACTIONS AND THE ACID PROPERTIES

Concurrency Control Transaction isolation is enforced by the means of a concurrency control
protocol. These protocols can be classified into two different families: pessimistic and optimistic.
Pessimistic protocols generally use locking. Before a transaction wants to read a data item x it has
to acquire a shared lock on x before a write it has to acquire an exclusive lock. A shared lock is only
granted if there are at most other shared locks on a data item. An exclusive lock is only granted if
there are no other locks granted on the data item.This allows read operations to execute concurrently
on the data item, but only one write operation at a time. If a lock cannot be granted, the requesting
transaction is blocked until the conflicting locks are released. In order to provide serializability (and
for some other reasons such as proper abort), transactions typically release all their locks only at
the end of execution, just after commit or abort. This mechanism is called strict 2-phase locking
(strict 2PL). In the first phase, during transaction execution all locks are requested step by step as
the operations are executed. At the end of transaction (second phase), all locks are released in one
step.

Figure A.1(c) shows how the execution of Figure A.1(a) is changed through locking. When
T1 submits its read operation r1(x), it first requests are shared lock (denoted as S1(x) in the figure).
The lock is granted and T1 performs the operation. When now T2 submits w2(x), it requests an
exclusive lock on x (denoted as X2(x) in the figure) but is blocked. As long as the transaction is
blocked, it cannot perform any further operations.Thus, the next operation is w1(y), and T1 receives
an exclusive lock on y. After its commit, both locks are released (denoted as an U for unlock in the
figure). Now T2 gets its lock, executes its write on x, acquires an exclusive lock on y, updates y and
finally commits and releases both locks. Figure A.1(d) shows the execution when the submission
order is as in Figure A.1(b). T1 gets a shared lock on x and T2 an exclusive lock on y. When T1 now
requests an exclusive lock on y it is blocked, and so is T2 when it requests the exclusive lock on x.
A deadlock has occurred. The database system has to detect it. It will abort one of the transactions,
which then releases its locks and the other transaction can continue. In the example, T1 is aborted
and T2 can finish its execution.

Locking might block transactions unnecessarily. In the first example above, the execution
would have been serializable, but locking nevertheless blocks T2 until all of T1 has completed. In
order to achieve more concurrency, optimistic protocols have been proposed.Whenever a transaction
accesses a data item, it creates a local copy and performs all write operations on the local copy. At the
end of the execution, a transaction checks whether its execution has been serializable. For instance,
if the transaction has read a data item x and another transaction has updated x and committed
since then, execution could potentially be unserializable. In such a case, a transaction is forced to
abort. In a simple form of optimistic concurrency control, the validation phase checks whether the
read-set of the transaction, i.e., the set of data items it has read, overlaps with the write-set of any
concurrent transaction that already has performed a successful validation. If this is the case, the
transaction aborts (simply discarding its local item copies). Otherwise, validation succeeds, and the
transaction writes all the items it has changed into the database.This final phase is called the commit

A.5. DISTRIBUTED TRANSACTIONS AND 2-PHASE COMMIT 127

phase. At most, one transaction can be in validation or commit phase. Many variations of optimistic
concurrency control have been proposed in the past.

A.5 DISTRIBUTED TRANSACTIONS AND 2-PHASE
COMMIT

In a distributed database, the data items of the database are distributed among several database nodes.
Each data item resides on exactly one node.When a transaction wants to access data items that reside
on different node, it turns into a distributed transaction. With this, enforcing the ACID properties
becomes more challenging. A particular concern is atomicity, namely that if a transaction commits
resp. aborts at one of the participating nodes, it has to commit resp. abort at all participating nodes.
This is tricky to achieve when there are failures. Therefore, a distributed coordination protocol is
needed that guarantees atomicity across all nodes.The best known protocol is 2-phase commit (2PC).
We only shortly outline the principles steps of 2PC here and refer the reader to Özsu and Valduriez
[1999] for a detailed discussion.

When the transaction wants to commit, one of the nodes becomes the coordinator of the
commit processing. It sends a PREPARE-TO-COMMIT message to all participating nodes.When
a participating node receives this message and is willing to commit it sends a PREPARED message
back to the coordinator. If it wants to abort the transaction, it sends an ABORT message back
to the coordinator and aborts the transaction locally. If the coordinator has received PREPARED
messages from all participants, it commits the transaction locally and sends a COMMIT message to
all participants. Upon receiving such message, a participant commits. If one of the participants has
returned an ABORT, the coordinator aborts the transaction and sends an ABORT to all participants
that had sent a PREPARED message. They will also abort the transaction. Clearly, this protocol
commits a transaction at all nodes if all participants send a PREPARED message and aborts a
transaction at all nodes as soon as at least one participant sends an ABORT message. But this is
only true of there are no failures.

In order to handle failures, nodes have to write information to their log on stable storage at cer-
tain time points. In particular, before the coordinator sends a message (PREPARE-TO-COMMIT,
COMMIT, ABORT), it writes in its log that it is sending the message. Before a participating
node sends the PREPARED message, it writes enough information into stable storage that it is
able to either commit or abort the message. It also writes into the log that it has sent the PRE-
PARED message. When a participants aborts or commits a transaction it writes a corresponding
COMMIT/ABORT log entry.

Failures can occur any time during the execution of the protocol. If a participant fails before
sending a PREPARED or ABORT to the coordinator, the coordinator will time out waiting for
the response. At this time, it can simply decide to abort the transaction as it is sure that no node has
committed the transaction yet. If the coordinator fails before a participant receives the PREPARE-
TO-COMMIT, it can also abort the transaction as the coordinator cannot commit the transaction
before receiving the PREPARED messages. However, if the coordinator fails after having sent

128 A. TRANSACTIONS AND THE ACID PROPERTIES

the PREPARE-TO-COMMIT message but before sending the COMMIT/ABORT message, a
participant that had sent the PREPARED message does not know the outcome. It is blocked until
the coordinator is recovered.

When the coordinator or a participant recovers after a failure, it will find enough information
in stable storage to know the state of the transaction. For instance, if the participant finds out that
is has sent the PREPARED message but failed before committing/aborting the transaction, it can
ask the coordinator for the final outcome.

129

Bibliography

A. El Abbadi and S. Toueg. Availability in partitioned replicated databases. In Proc. 5th
ACM SIGACT-SIGMOD Symp. on Principles of Database Systems, pages 240–251, 1986.
DOI: 10.1145/6012.15418 64

A.Adya. Weak Consistency: A GeneralizedTheory and Optimistic Implementations for DistributedTrans-
actions. PhD thesis, Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge,
1999. 70

D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi. Exploiting atomic broadcast in repli-
cated databases (extended abstract). In Proc. 3rd Int. Euro-Par Conf., pages 496–503, 1997.
DOI: 10.1007/BFb0002775 64

F. Akal, C. Türker, H-J Schek, Y. Breitbart, T. Grabs, and L. Veen. Fine-grained replication and
scheduling with freshness and correctness guarantees. In Proc. 31st Int. Conf. on Very Large Data
Bases, pages 565–576, 2005. 101

R. Alonso, D. Barbará, and H. Garcia-Molina. Data caching issues in an information retrieval
system. ACM Trans. Database Syst., 15(3):359–384, 1990. DOI: 10.1145/88636.87848 101

Y. Amir and C.Tutu. From total order to database replication. In Proc. 22nd Int. Conf. on Distributed
Computing Systems, pages 494–503, 2002. DOI: 10.1109/ICDCS.2002.1022299 45

C. Amza, A. L. Cox, and W. Zwaenepoel. Distributed versioning: Consistent replication for scaling
back-end databases of dynamic content web sites. In Proc. ACM/IFIP/USENIX Int. Middleware
Conf., pages 282–302, 2003a. 45, 64, 65

C. Amza, A. L. Cox, and W. Zwaenepoel. Conflict-aware scheduling for dynamic content applica-
tions. In Proc. 4th USENIX Symp. on Internet Tech. and Systems, 2003b. 45, 65

C.Amza,A.L.Cox,and W.Zwaenepoel. A comparative evaluation of transparent scaling techniques
for dynamic content servers. In Proc. 21st Int. Conf. on Data Engineering, pages 230–241, 2005.
DOI: 10.1109/ICDE.2005.6 117

T. A. Anderson, Y. Breitbart, H. F. Korth, and A. Wool. Replication, consistency, and practicality:
Are these mutually exclusive? In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
484–495, 1998. DOI: 10.1145/276305.276347 64

http://dx.doi.org/10.1145/6012.15418
http://dx.doi.org/10.1007/BFb0002775
http://dx.doi.org/10.1145/88636.87848
http://dx.doi.org/10.1109/ICDCS.2002.1022299
http://dx.doi.org/10.1109/ICDE.2005.6
http://dx.doi.org/10.1145/276305.276347

130 BIBLIOGRAPHY

H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A critique of ANSI SQL
isolation levels. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 1–10, 1995.
DOI: 10.1145/568271.223785 12

J. Bernabé-Gisbert, V. Zuikeviciute, F. D. Muñoz-Escoí, and F. Pedone. A probabilistic analysis
of snapshot isolation with partial replication. In Proc. 27th Symp. on Reliable Distributed Systems,
pages 249–258, 2008. DOI: 10.1109/SRDS.2008.10 46, 52, 87

Ph. A. Bernstein and N. Goodman. An algorithm for concurrency control and recovery in replicated
distributed databases. ACM Trans. Database Syst., 9(4):596–615, 1984. DOI: 10.1145/1994.2207
64

Ph. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987. 10, 12, 64, 125

Ph. A. Bernstein, A. Fekete, H. Guo, R. Ramakrishnan, and P. Tamma. Relaxed-currency serializ-
ability for middle-tier caching and replication. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 599–610, 2006. DOI: 10.1145/1142473.1142540 101

K. P. Birman, A. Schiper, and P. Stephenson. Lightweigt causal and atomic group multicast. ACM
Trans. Comp. Syst., 9(3):272–314, 1991. DOI: 10.1145/128738.128742 46

Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, and A. Silberschatz. Update propagation
protocols for replicated databases. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 97–108, 1999. DOI: 10.1145/304181.304191 102

M. J. Carey and M. Livny. Conflict detection tradeoffs for replicated data. ACM Trans. Database
Syst., 16(4):703–746, 1991. DOI: 10.1145/115302.115289 52, 64

E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-JDBC: Flexible database clustering middleware.
In Proc. USENIX 2004 Annual Technical Conf., FREENIX Track, pages 9–18, 2004. 45, 64, 65

E. Cecchet, G. Candea, and A. Ailamaki. Middleware-based database replication: the gaps between
theory and practice. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 739–752,
2008. DOI: 10.1145/1376616.1376691 46

T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live: an engineering perspective. In Proc.
ACM SIGACT-SIGOPS 26th Symp. on the Principles of Distributed Computing, pages 398–407,
2007. DOI: 10.1145/1281100.1281103 121

J. Chen, G. Soundararajan, and C. Amza. Autonomic provisioning of backend databases in dynamic
content web servers. In Proc. 3rd Int. Conf. on Autonomic Computing, pages 231–242, 2006.
DOI: 10.1109/ICAC.2006.1662403 117

http://dx.doi.org/10.1145/568271.223785
http://dx.doi.org/10.1109/SRDS.2008.10
http://dx.doi.org/10.1145/1994.2207
http://dx.doi.org/10.1145/1142473.1142540
http://dx.doi.org/10.1145/128738.128742
http://dx.doi.org/10.1145/304181.304191
http://dx.doi.org/10.1145/115302.115289
http://dx.doi.org/10.1145/1376616.1376691
http://dx.doi.org/10.1145/1281100.1281103
http://dx.doi.org/10.1109/ICAC.2006.1662403

BIBLIOGRAPHY 131

G. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications: a comprehensive
study. ACM Comp. Surv., 33(4):427–469, 2001. DOI: 10.1145/503112.503113 46

P. Chundi, D. J. Rosenkrantz, and S. S. Ravi. Deferred updates and data placement in dis-
tributed databases. In Proc. 12th Int. Conf. on Data Engineering, pages 469–476, 1996.
DOI: 10.1109/ICDE.1996.492196 102

A. Correia, J. Pereira, L. Rodrigues, N. Carvalho, R. Vilaça, R. Oliveira, and S. Guedes. Gorda: An
open architecture for database replication. In Proc. IEEE Int. Symp. on Networking Computing and
Applications, pages 287–290, 2007. DOI: 10.1109/NCA.2007.26 45

K. Daudjee and K. Salem. Lazy database replication with ordering guarantees. In Proc. 20th Int.
Conf. on Data Engineering, pages 424–435, 2004. DOI: 10.1109/ICDE.2004.1320016 15, 101

K. Daudjee and K. Salem. Lazy database replication with snapshot isolation. In Proc. 32nd Int. Conf.
on Very Large Data Bases, pages 715–726, 2006. 87

S. Elnikety, F. Pedone, and W. Zwaenopoel. Database replication using generalized snap-
shot isolation. In Proc. 24th Symp. on Reliable Distributed Systems, pages 73–84, 2005.
DOI: 10.1109/RELDIS.2005.14 87

S. Elnikety, S. G. Dropsho, and F. Pedone. Tashkent: uniting durability with transaction ordering
for high-performance scalable database replication. In Proc. 1st ACM SIGOPS/EuroSys European
Conf. on Computer Systems, pages 117–130, 2006. DOI: 10.1145/1217935.1217947 45, 46, 87

S. Elnikety, S. G. Dropsho, and W. Zwaenepoel. Tashkent+: memory-aware load balancing and
update filtering in replicated databases. In Proc. 2nd ACM SIGOPS/EuroSys European Conf. on
Computer Systems, pages 399–412, 2007. DOI: 10.1145/1272996.1273037 117

S. Elnikety, S. G. Dropsho, E. Cecchet, and W. Zwaenepoel. Predicting replicated database scala-
bility from standalone database profiling. In Proc. 4th ACM SIGOPS/EuroSys European Conf. on
Computer Systems, pages 303–316, 2009. DOI: 10.1145/1519065.1519098 52

A.Fekete,D.Liarokapis,E.O’Neil,P.O’Neil, and D.Shasha. Making snapshot isolation serializable.
ACM Trans. Database Syst., 30(2):492–528, 2005. DOI: 10.1145/1071610.1071615 70

U. Fritzke Jr and Ph. Ingels. Transactions on partially replicated data based on reliable and atomic
multicasts. In Proc. 21st Int. Conf. on Distributed Computing Systems, pages 284–291, 2001.
DOI: 10.1109/ICDSC.2001.918958 46

S. Gançarski, H. Naacke, E. Pacitti, and P. Valduriez. The Leganet system: Freshness-
aware transaction routing in a database cluster. Information Systems, 32(2):320–343, 2007.
DOI: 10.1016/j.is.2005.09.004 101, 117

http://dx.doi.org/10.1145/503112.503113
http://dx.doi.org/10.1109/ICDE.1996.492196
http://dx.doi.org/10.1109/NCA.2007.26
http://dx.doi.org/10.1109/ICDE.2004.1320016
http://dx.doi.org/10.1109/RELDIS.2005.14
http://dx.doi.org/10.1145/1217935.1217947
http://dx.doi.org/10.1145/1272996.1273037
http://dx.doi.org/10.1145/1519065.1519098
http://dx.doi.org/10.1145/1071610.1071615
http://dx.doi.org/10.1109/ICDSC.2001.918958
http://dx.doi.org/10.1016/j.is.2005.09.004

132 BIBLIOGRAPHY

I. Gashi, P. Popov, and L. Strigini. Fault tolerance via diversity for off-the-shelf products: A
study with SQL database servers. IEEE Trans. Dependable Sec. Comput., 4(4):280–294, 2007.
DOI: 10.1109/TDSC.2007.70208 116

J. Gray, P. Helland, P. E. O’Neil, and D. Shasha. The dangers of replication and a solu-
tion. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 173–182, 1996.
DOI: 10.1145/235968.233330 5, 24, 30, 64

H. Guo, P. Larson, R. Ramakrishnan, and J. Goldstein. Relaxed currency and consistency: How to
say “good enough" in SQL. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
815–826, 2004. DOI: 10.1145/1007568.1007661 101

M. Hayden. The Ensemble system. Technical report, Department of Computer Science, Cornell
University, 1998. 46

H-U. Heiss and R. Wagner. Adaptive load control in transaction processing systems. In Proc. 17th
Int. Conf. on Very Large Data Bases, pages 47–54, 1991. 117

J. Holliday, D. Agrawal, and A. El Abbadi. The performance of database replication with group
multicast. In Proc. of the IEEE Int. Conf. on Fault-Tolerant Computing Systems, pages 158–165,
1999. DOI: 10.1109/FTCS.1999.781046 64

J. Holliday, D. Agrawal, and A. El Abbadi. Partial database replication using epidemic com-
munication. In Proc. 22nd Int. Conf. on Distributed Computing Systems, pages 485–493, 2002.
DOI: 10.1109/ICDCS.2002.1022298 46

JGroups. JGroups: A Toolkit for Reliable Multicast Communication. http://www.jgroups.org;
accessed on August, 4, 2010. 46

R. Jiménez-Peris, M. Patiño-Martínez, and G. Alonso. Non-intrusive, parallel recovery of
replicated data. In Proc. 21st Symp. on Reliable Distributed Systems, pages 150–159, 2002a.
DOI: 10.1109/RELDIS.2002.1180183 116

R. Jiménez-Peris, M. Patiño-Martínez, B. Kemme, and G. Alonso. Improving the scalability of
fault-tolerant database clusters. In Proc. 22nd Int. Conf. on Distributed Computing Systems, pages
477–484, 2002b. DOI: 10.1109/ICDCS.2002.1022297 45, 50, 64, 65

R. Jiménez-Peris, M. Patiño-Martínez, G. Alonso, and B. Kemme. Are quorums an alternative for
data replication? ACMTrans. Database Syst., 28(3):257–294,2003.DOI: 10.1145/937598.937601
52, 120

B. Kemme. One-copy-serializability. In L. Liu and M. T. Özsu, editors, Encyclopedia of Database
Systems, pages 1947–1948. Springer US, 2009. DOI: 10.1007/978-0-387-39940-9 12

http://dx.doi.org/10.1109/TDSC.2007.70208
http://dx.doi.org/10.1145/235968.233330
http://dx.doi.org/10.1145/1007568.1007661
http://dx.doi.org/10.1109/FTCS.1999.781046
http://dx.doi.org/10.1109/ICDCS.2002.1022298
http://www.jgroups.org
http://dx.doi.org/10.1109/RELDIS.2002.1180183
http://dx.doi.org/10.1109/ICDCS.2002.1022297
http://dx.doi.org/10.1145/937598.937601
http://dx.doi.org/10.1007/978-0-387-39940-9

BIBLIOGRAPHY 133

B. Kemme and G. Alonso. A new approach to developing and implementing eager database replica-
tion protocols. ACM Trans. Database Syst., 25(3):333–379, 2000a. DOI: 10.1145/363951.363955
64

B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-R, a new way to implement database
replication. In Proc. 26th Int. Conf. on Very Large Data Bases, pages 134–143, 2000b. 45, 64

B. Kemme, A. Bartoli, and Ö. Babaoglu. Online reconfiguration in replicated databases based on
group communication. In Proc. Int. Conf. on Dependable Systems and Networks, pages 117–130,
2001. DOI: 10.1109/DSN.2001.941398 116

B. Kemme, F. Pedone, G. Alonso, A. Schiper, and M. Wiesmann. Using optimistic atomic broadcast
in transaction processing systems. IEEE Trans. Knowl. and Data Eng., 15(4):1018–1032, 2003.
DOI: 10.1109/TKDE.2003.1209016 64

A.-M. Kermarrec, A. I. T. Rowstron, M. Shapiro, and P. Druschel. The IceCube approach to the
reconciliation of divergent replicas. In Proc. ACM SIGACT-SIGOPS 20th Symp. on the Principles
of Distributed Computing, pages 210–218, 2001. DOI: 10.1145/383962.384020 17

J. J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file system. ACM Trans.
Comp. Syst., 10(1):3–25, 1992. DOI: 10.1145/146941.146942 102

K. Krikellas, S. Elnikety, Z. Vagena, and O. Hodson. Strongly consistent replication for a bargain. In
Proc. 25th Int. Conf. on Data Engineering, pages 52–63,2010.DOI: 10.1109/ICDE.2010.5447893
87

N. Krishnakumar and A. J. Bernstein. Bounded ignorance in replicated systems. In Proc. 10th
ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages 63–74, 1991.
DOI: 10.1145/113413.113419 101

H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control. ACM Trans.
Database Syst., 6(2):213–226, 1981. DOI: 10.1145/319566.319567 86

E. Lau and S. Madden. An integrated approach to recovery and high availability in an updatable,
distributed data warehouse. In Proc. 32nd Int. Conf. on Very Large Data Bases, pages 703–714,
2006. 116

W. Liang and B. Kemme. Online recovery in cluster databases. In Advances in Database
Technology, Proc. 11th Int. Conf. on Extending Database Technology, pages 121–132, 2008.
DOI: 10.1145/1353343.1353362 116

Y. Lin, B. Kemme, M. Patiño-Martínez, and R. Jiménez-Peris. Middleware based data replication
providing snapshot isolation. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
419–430, 2005. DOI: 10.1145/1066157.1066205 45, 87

http://dx.doi.org/10.1145/363951.363955
http://dx.doi.org/10.1109/DSN.2001.941398
http://dx.doi.org/10.1109/TKDE.2003.1209016
http://dx.doi.org/10.1145/383962.384020
http://dx.doi.org/10.1145/146941.146942
http://dx.doi.org/10.1109/ICDE.2010.5447893
http://dx.doi.org/10.1145/113413.113419
http://dx.doi.org/10.1145/319566.319567
http://dx.doi.org/10.1145/1353343.1353362
http://dx.doi.org/10.1145/1066157.1066205

134 BIBLIOGRAPHY

Y. Lin, B. Kemme, M. Patiño-Martínez, and R. Jiménez-Peris. Enhancing edge computing with
database replication. In Proc. 26th Symp. on Reliable Distributed Systems, pages 45–54, 2007.
DOI: 10.1109/SRDS.2007.10 51

Y. Lin, B. Kemme, R. Jiménez-Peris, M. Patiño-Martínez, and J. E. Armendáriz-Iñigo. Snapshot
isolation and integrity constraints in replicated databases. ACM Trans. Database Syst., 34(2):Paper
11, 2009. DOI: 10.1145/1538909.1538913 15, 87

D. Malkhi and D. B. Terry. Concise version vectors in WinFS. Distributed Computing, 20(3):
209–219, 2007. DOI: 10.1007/s00446-007-0044-y 16, 102

K. Manassiev and C. Amza. Scaling and continuous availability in database server clusters through
multiversion replication. In Proc. Int. Conf. on Dependable Systems and Networks, pages 666–676,
2007. DOI: 10.1109/DSN.2007.86 116

K. Manassiev, M. Mihailescu, and C. Amza. Exploiting distributed version concurrency in a trans-
actional memory cluster. In Proc. 11th ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming, pages 198–208, 2006. DOI: 10.1145/1122971.1123002 45

F. Mattern. Time and global states in distributed systems. In Proc. of the Int. Workshop on Parallel
and Distributed Algorithms, 1989. 97

J. Milán, R. Jiménez-Peris, M. Patiño-Martínez, and B. Kemme. Adaptive middleware for data
replication. In Proc. ACM/IFIP/USENIX Int. Middleware Conf., pages 175–194, 2004. 117

H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol kernel supporting multiple
coordinated channels. In Proc. 21st Int. Conf. on Distributed Computing Systems, pages 707–710,
2001. DOI: 10.1109/ICDSC.2001.919005 46

T. Mishima and H. Nakamura. Pangea: An eager database replication middleware guaranteeing
snapshot isolation without modification of database servers. PVLDB, 2(1):1066–1077, 2009. 87

L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-Papadopoulos.
Totem: A fault-tolerant multicast group communication system. Commun. ACM, 39(4):54–63,
1996. DOI: 10.1145/227210.227226 46

F. D. Muñoz-Escoí, J. M. Bernabé-Gisbert, R. de Juan-Marín, J. E. Armendáriz-Iñigo, and
J. R. González de Mendívil. Revising 1-copy equivalence in replicated databases with snap-
shot isolation. In Proc. OTM Confederated Int. Conf. CoopIS, DOA, GADA, and ODBASE, pages
467–483, 2009. DOI: 10.1007/978-3-642-05148-7_36 87

M. Nicola and M. Jarke. Performance modeling of distributed and replicated databases. IEEE
Trans. Knowl. and Data Eng., 12(4):645–672, 2000. DOI: 10.1109/69.868912 46, 52

http://dx.doi.org/10.1109/SRDS.2007.10
http://dx.doi.org/10.1145/1538909.1538913
http://dx.doi.org/10.1007/s00446-007-0044-y
http://dx.doi.org/10.1109/DSN.2007.86
http://dx.doi.org/10.1145/1122971.1123002
http://dx.doi.org/10.1109/ICDSC.2001.919005
http://dx.doi.org/10.1145/227210.227226
http://dx.doi.org/10.1007/978-3-642-05148-7_36
http://dx.doi.org/10.1109/69.868912

BIBLIOGRAPHY 135

Ch. Olston, B. Thau Loo, and J. Widom. Adaptive precision setting for cached approximate
values. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 355–366, 2001.
DOI: 10.1145/376284.375710 101

M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems. Prentice Hall, 1999. 127

E. Pacitti and E. Simon. Update propagation strategies to improve freshness in lazy master replicated
databases. VLDB J., 8(3-4):305–318, 2000. DOI: 10.1007/s007780050010 101

E. Pacitti, P. Minet, and E. Simon. Fast algorithm for maintaining replica consistency in lazy master
replicated databases. In Proc. 25th Int. Conf. on Very Large Data Bases, pages 126–137, 1999. 102

E. Pacitti, C. Coulon, P. Valduriez, and M. T. Özsu. Preventive replication in a database cluster.
Distributed and Parallel Databases, 18(3):223–251, 2005. DOI: 10.1007/s10619-005-4257-4 46

M. Patiño-Martínez, R. Jiménez-Peris, B. Kemme, and G. Alonso. MIDDLE-R: Consistent
database replication at the middleware level. ACM Trans. Comp. Syst., 23(4):375–423, 2005.
DOI: 10.1145/1113574.1113576 45, 64, 65

F. Pedone, R. Guerraoui, and A. Schiper. The database state machine approach. Distributed and
Parallel Databases, 14(1):71–98, 2003. DOI: 10.1023/A:1022887812188 64

F. Perez-Sorrosal, M. Patiño-Martínez, R. Jiménez-Peris, and B. Kemme. Consistent and scal-
able cache replication for multi-tier J2EE applications. In Proc. ACM/IFIP/USENIX 8th Int.
Middleware Conf., pages 328–347, 2007. DOI: 10.1007/978-3-540-76778-7_17 87, 120

Ch. Plattner and G. Alonso. Ganymed: Scalable replication for transactional web applications. In
Proc. ACM/IFIP/USENIX Int. Middleware Conf., pages 155–174, 2004. 45, 86

Ch. Plattner, G. Alonso, and M. T. Özsu. DBFarm: A scalable cluster for multiple
databases. In Proc. ACM/IFIP/USENIX 7th Int. Middleware Conf., pages 180–200, 2006a.
DOI: 10.1007/11925071_10 45

Ch. Plattner, G. Alonso, and M. T.-Özsu. Extending DBMSs with satellite databases. VLDB J., 17
(4):657–682, 2006b. DOI: 10.1007/s00778-006-0026-x 45, 101

PostgreSQL. PostgreSQL, the world’s most advanced open source database, 2007. http://www.
postgresql.org; accessed on August, 15, 2010. 34

N. M. Preguiça, R. Rodrigues, C. Honorato, and J. Lourenço. Byzantium: Byzantine-fault-tolerant
database replication providing snapshot isolation. In Proc. of the 4th Workshop on Hot Topics in
Systems Dependability (HotDep), 2008. 116

C. Pu and A. Leff. Replica control in distributed systems: An asynchronous approach. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 377–386,1991.DOI: 10.1145/119995.115856
101

http://dx.doi.org/10.1145/376284.375710
http://dx.doi.org/10.1007/s007780050010
http://dx.doi.org/10.1007/s10619-005-4257-4
http://dx.doi.org/10.1145/1113574.1113576
http://dx.doi.org/10.1023/A:1022887812188
http://dx.doi.org/10.1007/978-3-540-76778-7_17
http://dx.doi.org/10.1007/11925071_10
http://dx.doi.org/10.1007/s00778-006-0026-x
http://www.postgresql.org
http://www.postgresql.org
http://dx.doi.org/10.1145/119995.115856

136 BIBLIOGRAPHY

M. Rabinovich, N. H. Gehani, and A. Kononov. Scalable update propagation in epidemic replicated
databases. In Advances in DatabaseTechnology, Proc. 5th Int. Conf. on Extending DatabaseTechnology,
pages 207–222, 1996. DOI: 10.1007/BFb0014154 102

U. Röhm, K. Böhm, and H.-J. Schek. OLAP query routing and physical design in a database cluster.
In Advances in Database Technology, Proc. 7th Int. Conf. on Extending Database Technology, pages
254–268, 2000. DOI: 10.1007/3-540-46439-5_18 117

U. Röhm, K. Böhm, H.-J. Schek, and H. Schuldt. FAS - a freshness-sensitive coordination middle-
ware for a cluster of OLAP components. In Proc. 28th Int. Conf. on Very Large Data Bases, pages
754–765, 2002. DOI: 10.1016/B978-155860869-6/50072-X 45, 101, 117

Y. Saito and M. Shapiro. Optimistic replication. ACM Comp. Surv., 37(1):42–81, 2005.
DOI: 10.1145/1057977.1057980 16, 102

J. Salas, R. Jiménez-Peris, M. Patiño-Martínez, and B. Kemme. Lightweight reflection for
middleware-based database replication. In Proc. 25th Symp. on Reliable Distributed Systems, pages
377–390, 2006. DOI: 10.1109/SRDS.2006.28 45

N.Schiper,R.Schmidt, and F.Pedone. Optimistic algorithms for partial database replication. In Proc.
of Int. Conf. On Principles of DIstributed Systems, pages 81–93, 2006. DOI: 10.1007/11945529_7
46

F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.
ACM Comp. Surv., 22(4):299–319, 1990. DOI: 10.1145/98163.98167 33

B. Schroeder, M. Harchol-Balter, A. Iyengar, E. M. Nahum, and A. Wierman. How to deter-
mine a good multi-programming level for external scheduling. In Proc. 22nd Int. Conf. on Data
Engineering, page 60, 2006. DOI: 10.1109/ICDE.2006.78 117

D. Serrano, M. Patiño-Martínez, R. Jiménez, and B. Kemme. Boosting database replication scala-
bility through partial replication and 1-copy-SI. In Proc. of IEEE Pacific-Rim Conf. on Distributed
Computing, pages 290–297, 2007. 46, 52, 87

D. Serrano, M. Patiño-Martínez, R. Jiménez-Peris, and B. Kemme. An autonomic approach for
replication of internet-based services. In Proc. 27th Symp. on Reliable Distributed Systems, pages
127–136, 2008. DOI: 10.1109/SRDS.2008.22 45, 46, 117

G. Soundararajan and C. Amza. Reactive provisioning of backend databases in shared dynamic
content server clusters. ACM Trans. on Autonomous and Adaptive Systems, 1(2):151–188, 2006.
DOI: 10.1145/1186778.1186780 117

G. Soundararajan, C. Amza, and A. Goel. Database replication policies for dynamic content appli-
cations. In Proc. 1st ACM SIGOPS/EuroSys European Conf. on Computer Systems, pages 89–102.
ACM, 2006. DOI: 10.1145/1217935.1217945 117

http://dx.doi.org/10.1007/BFb0014154
http://dx.doi.org/10.1007/3-540-46439-5_18
http://dx.doi.org/10.1016/B978-155860869-6/50072-X
http://dx.doi.org/10.1145/1057977.1057980
http://dx.doi.org/10.1109/SRDS.2006.28
http://dx.doi.org/10.1007/11945529_7
http://dx.doi.org/10.1145/98163.98167
http://dx.doi.org/10.1109/ICDE.2006.78
http://dx.doi.org/10.1109/SRDS.2008.22
http://dx.doi.org/10.1145/1186778.1186780
http://dx.doi.org/10.1145/1217935.1217945

BIBLIOGRAPHY 137

A. Sousa, R. Oliveira, F. Moura, and F. Pedone. Partial replication in the database state ma-
chine. In Proc. IEEE Int. Symp. on Networking Computing and Applications, pages 298–309, 2001.
DOI: 10.1109/NCA.2001.962546 46

Spread. The Spread toolkit. http://www.spread.org; accessed on August, 15, 2010, 2007. 46

I. Stanoi, D. Agrawal, and A. El Abbadi. Using broadcast primitives in replicated
databases. In Proc. 18th Int. Conf. on Distributed Computing Systems, pages 148–155, 1998.
DOI: 10.1109/ICDCS.1998.679497 64

D. B. Terry. Replicated Data Management for Mobile Computing. Morgan &
Claypool, 2008. Synthesis Lectures on Mobile and Pervasive Computing.
DOI: 10.2200/S00132ED1V01Y200807MPC005 121

D. B. Terry, M. Theimer, K. Petersen, A. J. Demers, M. Spreitzer, and C. Hauser. Managing update
conflicts in Bayou, a weakly connected replicated storage system. In Proc. 15th ACM Symp. on
Operating System Principles, pages 172–183, 1995. DOI: 10.1145/224057.224070 102

R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A flexible group communication system.
Commun. ACM, 39(4):76–83, 1996. DOI: 10.1145/227210.227229 46

B. Vandiver, H. Balakrishnan, B. Liskov, and S. Madden. Tolerating byzantine faults in transaction
processing systems using commit barrier scheduling. In Proc. 21st ACM Symp. on Operating System
Principles, pages 59–72, 2007. 104, 116

R. Vilaça, J. Pereira, R. Oliveira, J.E. Armendariz, and J.R. Gonzalez. On the cost of database
clusters reconfiguration. In Proc. 28th Symp. on Reliable Distributed Systems, pages 259–267, 2009.
DOI: 10.1109/SRDS.2009.27 116

W. Vogels. Eventually consistent. ACM Queue, 6(6):14–19, 2008. DOI: 10.1145/1466443.1466448
16

W. Wang and C. Amza. On optimal concurrency control for optimistic replication. In Proc. 24rd
Int.Conf. on Distributed Computing Systems,pages 317–326,2009.DOI: 10.1109/ICDCS.2009.71
102

M. Wiesmann and A. Schiper. Comparison of database replication techniques based
on total order broadcast. IEEE Trans. Knowl. and Data Eng., 17(4):551–566, 2005.
DOI: 10.1109/TKDE.2005.54 52

O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data replication algorithm. ACM Trans. Database
Syst., 22(2):255–314, 1997. DOI: 10.1145/249978.249982 46, 117

S. Wu and B. Kemme. Postgres-R(SI): Combining replica control with concurrency control based
on snapshot isolation. In Proc. 21st Int. Conf. on Data Engineering, pages 422–433, 2005. 45, 46,
86

http://dx.doi.org/10.1109/NCA.2001.962546
http://www.spread.org
http://dx.doi.org/10.1109/ICDCS.1998.679497
http://dx.doi.org/10.2200/S00132ED1V01Y200807MPC005
http://dx.doi.org/10.1145/224057.224070
http://dx.doi.org/10.1145/227210.227229
http://dx.doi.org/10.1109/SRDS.2009.27
http://dx.doi.org/10.1145/1466443.1466448
http://dx.doi.org/10.1109/ICDCS.2009.71
http://dx.doi.org/10.1109/TKDE.2005.54
http://dx.doi.org/10.1145/249978.249982

138 BIBLIOGRAPHY

H. Yu and A. Vahdat. Design and evaluation of a conit-based continuous consistency model for
replicated services. ACM Trans. Comp. Syst., 20(3):239–282, 2002. DOI: 10.1145/566340.566342
101

V. Zuikeviciute and F. Pedone. Conflict-aware load-balancing techniques for database repli-
cation. In Proc. 2008 ACM Symp. on Applied Computing, pages 2169–2173, 2008.
DOI: 10.1145/1363686.1364205 117

http://dx.doi.org/10.1145/566340.566342
http://dx.doi.org/10.1145/1363686.1364205

140

Authors’ Biographies

BETTINA KEMME
Bettina Kemme is associate professor at the School of Computer Science of McGill University,
Montreal, Canada. She received her undergraduate degree at the Friedrich-Alexander University in
Erlangen, Germany, and her Ph.D. at the Swiss Federal Institute of Technology in Zurich (ETHZ).
Her research focus lies in the design and development of distributed information systems, in partic-
ular, in data consistency aspects and the interplay between communication and data management.
Her work on data replication is well known in the database and distributed systems communities.
She has been PC member of many database and distributed systems conferences, such as VLDB,
SIGMOD, ICDE, EDBT, Middleware, ICDCS, Eurosys, and P2P. She has been on the Editorial
Board for the Encyclopedia of Database Systems, Springer, and track co-chair of ICDE 2009. She
is area editor of Information Systems, Elsevier.

RICARDO JIMÉNEZ PERIS
Ricardo Jiménez Peris is associate professor at Universidad Politecnica de Madrid and co-director
of the Distributed Systems Lab (LSD). He received his master and PhD degrees from Universi-
dad Politecnica de Madrid. He was a visiting postdoc researcher at the Swiss Federal Institute of
Technology in Zurich (ETHZ). His research interests have been around scalable and fault toler-
ant distributed systems and currently focusing on cloud computing. His research on scalable data
replication during the last decade has obtained well-known results in the distributed systems and
database communities. He is coordinator of the Stream European project on data stream cloud sys-
tems. He has served as General chair at SRDS, Programme committee chair at EDCC, workshop
chair at ICDCS, and tutorial chair at LADC, as well as Programme committee member at ICDCS,
DSN, DISC, SRDS, EDCC among others. He has also been member of the expert group on cloud
computing appointed by the European Commission.

MARTA PATIÑO-MARTÍNEZ
Marta Patiño-Martínez is associate professor at the Computer Science School of Universidad
Politecnica de Madrid, Madrid, Spain. She received her master degree from Universidad Politecnica
de Valencia, Spain and her PhD degree from Universidad Politecnica de Madrid. She was a visiting
postdoc researcher at the Swiss Federal Institute of Technology in Zurich (ETHZ). Her research has
focused on distributed systems with special emphasis on scalability and high availability. Her research

AUTHORS’ BIOGRAPHIES 141

on scalable data replication during the last 10 years has attracted the attention of many researchers
from the distributed systems and database community. She is coordinator of the CumuloNimbo
European project on cloud transactional systems. She has served in the Programme Committee of
several distributed and database conferences such as VLDB, ICDCS, ICDE, SRDS, Middleware,
and EDCC.

	Overview
	Motivation
	Challenges
	Replica Control
	Other Issues

	1-Copy-Equivalence and Consistency
	Replication Model
	1-Copy-Isolation
	1-Copy-Atomicity
	1-Copy-Durability
	Relationship Between Isolation, Atomicity and Durability
	1-Copy-Consistency
	Session Consistency.
	Eventual Consistency

	Basic Protocols
	Eager Protocols
	Protocol Description
	Example Execution
	Eager Properties
	Primary Copy vs. Update Anywhere

	Lazy Protocols
	Protocol Description
	Example Execution
	Lazy vs. Eager Properties
	Primary Copy vs. Update Anywhere
	Summary

	Replication Architecture
	Where to Locate the Replication Logic
	Kernel Based Architecture
	Middleware Based Architecture
	Kernel vs. Middleware Based Replication
	Black vs. Grey Box Middleware

	Processing of Write Operations
	Partial Replication
	Other Issues
	Group Communication as Building Block
	Group Communication and Reliable Multicast
	Simplifying Replication with Group Communication

	Related Work

	The Scalability of Replication
	Model
	The Analysis
	Related Work

	Eager Replication and 1-Copy-Serializability
	Centralized Middleware
	Protocol
	Example Execution
	Algorithm Properties
	Discussion

	Decentralized Middleware
	Protocol
	Example Execution
	Algorithm Properties
	Discussion

	Decentralized Middleware with Asymmetric Processing
	Protocol
	Example Execution
	Algorithm Properties

	Related Work

	1-Copy-Snapshot Isolation
	1-Copy-Snapshot Isolation
	Snapshot Isolation in a Non-Replicated System
	Snapshot Isolation in a Replicated System

	Primary Copy -- Centralized Middleware
	Protocol
	Example Execution
	Algorithm Properties

	Update Anywhere -- Centralized Middleware
	Protocol
	Example Execution
	Algorithm Properties

	Update-Anywhere -- Decentralized Middleware
	Protocol Description
	Example Execution
	Algorithm Properties

	Snapshot Isolation vs. Traditional Optimistic Concurrency Control
	Related Work

	Lazy Replication
	Bounding the Staleness in Lazy Primary Copy
	Boundary Types
	Basic Implementation
	Push vs. Pull Based Refresh
	Materialized Views
	Transaction Propagation

	Multiple Primaries
	Lazy Update Anywhere
	Distributed vs. Central Conflict Management
	Conflict Detection
	Conflict Resolution

	Related Work
	Bounding Staleness
	Replica Placement
	Conflict Detection and Resolution

	Self-Configuration and Elasticity
	Self-healing
	Fault-Tolerant Measures During Normal Processing
	Failure Types
	Failover: Client Side
	Failover: Server Side
	Recovery

	Self-Optimization
	Load-Balancing
	Other Optimization Techniques

	Elasticity: Self-Provisioning
	System Reconfiguration
	Deciding on the Right Number of Replicas

	Related Work

	Other Aspects of Replication
	Multi-Tier Architectures
	Quorums
	Mobile and Peer-to-Peer Environments

	Transactions and the ACID Properties
	Atomicity
	Consistency
	Durability
	Isolation

	Distributed Transactions and 2-Phase Commit

	Bibliography
	Authors' Biographies

